

CM-CIC IMMOBILIER

Rue Jules Supervielle LOOS-EN-GOHELLE (62)

Diagnostic environnemental du milieu souterrain

Rapport

Réf : CSSPNO172503 / RSSPNO07255-01 LBO / PJT / EL

30/11/2017

CM-CIC IMMOBILIER

Rue Jules Supervielle LOOS-EN-GOHELLE (62)

Diagnostic environnemental du milieu souterrain

Pour cette étude, le chef du projet est Kim POLEZ

Objet de l'indice	Date	Indice	Réd	laction	Vérifica	ation	Validation/Supervision		
	Date	muice	Nom	Signature	Nom	Signature	Nom	Signature	
Rapport	30/11/2017	01	L.BOURSIN		P.JACQUART		E.LANGARD	1	

Numéro de contrat / de rapport :	Réf : CSSPNO172503 / RSSPNO07255-01
Numéro d'affaire :	A44863
Domaine technique :	SP02
Mots clé du thésaurus	DIAGNOSTIC DE POLLUTION
	MINE
	ETUDE GEOTECHNIQUE

BURGEAP Agence Nord-Ouest – site d'Arras

5, chemin des Filatiers – 62223 Sainte-Catherine-Les-Arras
Tél: 03.21.24.38.00 • Fax: 03.21.24.38.09
agence.arras@burgeap.fr

SOMMAIRE

-		echnique	
1.		uction	
	1.1 1.2	Objet de l'étude	
	1.2	Méthodologie générale et règlementation en vigueur Documents de référence	
2.			
2. 3.		fication du site	
3. 4.		d'aménagement	
4. 5.		èse des études antérieures igations sur les sols (A200)	
J.		• ,	
	5.1 5.2	Objectifs des investigations Nature des investigations	
	5.3	Observations et mesures de terrain	
	5.4	Stratégie et mode opératoire d'échantillonnage	
	5.5 5.6	Conservation des échantillons Programme analytique sur les sols	18
	5.6 5.7	Valeurs de référence pour les solsValeurs de référence pour les sols	
	5.8	Résultats et interprétation des analyses sur les sols	
6.	Schén	na conceptuel à l'issue du diagnostic	29
7.		èse et recommandations	
	7.1	Synthèse	31
	7.2	Recommandations	
8.	Limite	s d'utilisation d'une étude de pollution	33
		•	
-14			
FIC	BURE	.S	
Figure	e 1 : Loca	alisation géographique du site étudié (source Géoportail)	7
Figure	e 2 : Vue	aérienne de l'emprise étudiée	8
		alisation des tranchées et sapes au droit de la zone d'étude (source National Library	
		du projet d'aménagement (source Lejail et Associés, 2005)	
		Ilisation des installations historiques, investigations initiales et anomalies de	10
conce	entration	(GINGER CEBTP, 2014)	14
Figure	e 6 : Loca	alisation des investigations complémentaires réalisées sur les sols (BURGEAP.	
		I des données collectées lors du diagnostic initial (Ginger CEBTP 2014)	
		ographie de synthèse des anomalies dans les solséma conceptuel (usage futur)	
ı ıyul	- U . JUIT	ana conceptuer (usaye rutur)	50

TABLEAUX

Tableau 1 : Synthèse des données historiques et du contexte environnemental (GINGER CEBTP)	11
Tableau 2 : Investigations réalisées sur les sols	16
Tableau 3 : Analyses réalisées sur les échantillons de sols	
Tableau 4 : Résultats d'analyses sur les sols bruts (1/4)	
Tableau 5 : Résultats d'analyses sur les sols bruts (2/4)	
Tableau 6 : Résultats d'analyses sur les sols bruts (3/4)	23
Tableau 7 : Résultats d'analyses sur les sols bruts (4/4)	24
Tableau 8 : Résultats d'analyses sur éluat	
Tableau 9 : Caractérisation des déblais en cas de gestion hors site selon les paramètres de l'arrêté	
du 12/12/2014	28

ANNEXES

- Annexe 1. Fiches BASIAS NPC6200408 et NPC6200318
- Annexe 2. Investigations initiales Résultats d'analyses
- Annexe 3. Investigations initiales Coupes techniques
- Annexe 4. Fiches d'échantillonnage des sols BURGEAP, novembre 2017
- Annexe 5. Méthodes analytiques, LQ et flaconnage
- Annexe 6. Bordereaux d'analyse des sols
- Annexe 7. Propriétés physico-chimiques
- Annexe 8. Glossaire

Synthèse technique

Client	CM-CIC IMMOBILIER
Informations sur le site	 Intitulé/adresse du site: Rue Jules Supervielle - LOOS-EN-GOHELLE (62) Parcelles cadastrales: section AP – parcelles n°14 (part.), 19 à 22, 27 (part.), 39 (part.), 164 (part.), 165 et 174 Superficie totale: 5 ha environ Propriétaire actuel: Ville de Loos-en-Gohelle Usage et exploitant actuel: espace public de promenade
Statut réglementaire	Installation ICPE : non
Contexte de l'étude	Cette étude est réalisée en vue de l'aménagement du site.
Projet d'aménagement	Le projet d'aménagement prévoit la construction de 4 bâtiments de logements collectifs associés à des voiries, espaces verts collectifs et jardins partagés, ainsi que 79 logements individuels avec jardins privatifs.
Historique	Le site étudié est localisé sur l'emprise des anciennes installations minières des carreaux des fosses n°5 et 5bis de Béthune, exploitées par les Houillères du Bassin du Nord et du Pas-de-Calais (HBNPC) entre 1875 et les années 1970. Le site en friche a par la suite fait l'objet de démantèlement et de remblaiements entre les années 1970 et 1990, puis est resté un espace végétalisé non exploité depuis.
Géologie / hydrogéologie	La géologie de la zone d'étude est la suivante, sur la base des observations réalisées au cours des investigations : sous couvert végétal, remblais de schistes sur limon puis craie. La nappe de la Craie est rencontrée vers 30 à 35 m de profondeur et s'écoule localement du sud-ouest vers le nord-est.
Impacts identifiés lors des précédentes études	Un premier diagnostic réalisé en 2014 indique la présence dans les sols de teneurs en métaux (PM5, ST25, ST27 à ST30) et d'hydrocarbures (ST26).
Investigations réalisées	 21 sondages au carottier portatif entre 1,5 et 2 m de profondeur échantillonnage et analyses sur les sols
Polluants recherchés	Hydrocarbures C ₁₀ -C ₄₀ , HAP, BTEX, COHV, 8 métaux, phénols et cyanures, Pack ISDI selon les paramètres de l'arrêté du 12/12/2014
Impacts identifiés lors de cette étude	Les investigations et analyses réalisées en novembre 2017 indiquent : • la présence d'hydrocarbures et de naphtalène (HAP volatil) au droit de futurs logements individuels (ST26, SC11), voiries (SC8) et logements collectifs (SC10); • un bruit de fond généralisé en métaux, HAP et hydrocarbures C ₁₀ -C ₄₀ .
Schéma conceptuel	 Sources: sols avec présence d'HCT, d'HAP et de métaux Enjeux à protéger: futurs habitants (adultes, enfants) Voies d'expositions: inhalation, contact direct pour les zones non recouvertes, inhalation/ingestion de sols et poussières, usage d'eaux contaminées et ingestion de végétaux cultivés sur site
Conséquences sur le projet / recommandations	 Compte-tenu de ces éléments, nous recommandons: la réalisation d'investigations complémentaires: sur les sols au droit des deux secteurs non caractérisés (défrichage nécessaire) en bordure ouest du site; autour des zones impactées par les hydrocarbures et le naphtalène afin de préciser leur extension; sur les gaz du sol au droit des zones impactées par le mercure (ST11 et PM5: futurs logements individuels), potentiellement volatil à de telles concentrations; l'apport de terres végétales saines de recouvrement sur 50 cm d'épaisseur au droit de la zone de jardin partagé et des jardins privatifs; l'apport de terres saines de recouvrement sur 30 cm d'épaisseur au droit des espaces verts. A l'issue des investigations complémentaires et de délimitation, la réalisation d'un plan de gestion, permettant de déterminer les éventuelles mesures de gestion à mettre en place au droit du site dans le cadre de son réaménagement, couplé à une analyse des risques sanitaires permettant de vérifier la compatibilité du site avec l'usage envisagé. Ce document devra également présenter un plan de terrassement en adéquation avec le projet d'aménagement immobilier (nature et profondeur des décaissements). Nous préconisons également de garder en mémoire les études relatives à la qualité environnementale des sols au droit du site par une identification pérenne du présent rapport dans les documents d'urbanisme et fonciers. Notons que BURGEAP ne pourra être tenu responsable si des terres excavées issues du site ne sont pas évacuées vers des exutoires dument habilités à les prendre en charge.

1. Introduction

1.1 Objet de l'étude

La société CM-CIC IMMOBILIER projette l'aménagement d'un ensemble immobilier de 5 ha sur un site localisé rue Jules Supervielle à LOOS-EN-GOHELLE (62). Le projet envisagé comprend la construction de maisons individuelles avec jardins privatifs et d'immeubles de logements collectifs, associés à des voiries et espaces verts.

Les parcelles concernées sont situées au droit du carreau d'une ancienne fosse minière (fosses n°5 et 5bis de Béthune) et ont accueilli des installations potentiellement polluantes en lien avec cette activité historique. Un premier diagnostic réalisé en 2014 par Ginger CEBTP, indique la présence dans les sols de teneurs en métaux et d'hydrocarbures.

En parallèle, une étude géotechnique (G1-PGC) préalable réalisée en 2014 avait permis de retenir en première approche certaines dispositions constructives. Ces études ont essentiellement concerné la partie est de l'emprise du projet d'aménagement envisagé.

Dans le cadre de ce projet, CM-CIC IMMOBILIER consulte le groupe GINGER pour un diagnostic global afin de compléter les études précédentes et de l'accompagner dans la réalisation :

- d'une étude géotechnique de type G2-AVP (réalisée par Ginger CEBTP) au droit des futures voiries (non traité dans ce rapport) ;
- d'un diagnostic environnemental complémentaire du milieu souterrain (réalisé par BURGEAP) au droit de l'ensemble du site.

Le volet environnemental du diagnostic global fait l'objet du présent rapport.

1.2 Méthodologie générale et règlementation en vigueur

La méthodologie retenue par BURGEAP pour la réalisation de cette étude prend en compte les textes et outils de la politique nationale de gestion des sites et sols pollués en France de février 2007 mise à jour en avril 2017 et les exigences de la **norme AFNOR NF X 31-620 « Qualité du sol – Prestations de services relatives aux sites et sols pollués »** révisée en juin 2011, pour le domaine A : « Etudes, assistance et contrôle ».

Nous nous plaçons dans une prestation de type **EVAL phase 2**, dont les objectifs sont de répondre aux questions suivantes :

- les sols du site sont-ils pollués, où, et par quelles substances ?
- quelles sont les conséquences possibles sur les activités actuelles et futures du site, sur l'environnement?
- convient-il de faire une IEM, un Plan de Gestion, une simple surveillance ?

Cette prestation globale inclut la prestation élémentaire A200 : Prélèvements, mesures, observations et/ou analyses sur les sols. L'étude est réalisée sur la base des connaissances techniques et scientifiques disponibles à la date de sa réalisation.

1.3 Documents de référence

Les documents consultés dans le cadre de cette étude sont les suivants :

- plan masse du projet d'aménagement et plan topographique (Lejail et Associés, 2005);
- rapport CEBTP de novembre 2014 n° NREP.E025 relatif à l'« Etude historique et documentaire et au diagnostic initial de la qualité des sols et des eaux » ;
- rapport CEBTP du 24/10/2014 NBE2.E0206 14CR1V2BE « Etude géotechnique préalable principes généraux de construction (G1-PGC) ».

2. Identification du site

- Adresse du site: Rue Jules Supervielle LOOS-EN-GOHELLE (62) (Figure 1).
- Parcelles cadastrales: section AP parcelles n°14 (part.), 19 à 22, 27 (part.), 39 (part.), 164 (part.), 165 et 174
- Superficie totale : 5 ha environ
- Altitude moyenne / Topographie: de +58 à +68 m NGF¹ / pente globale orientée du nord vers le sud

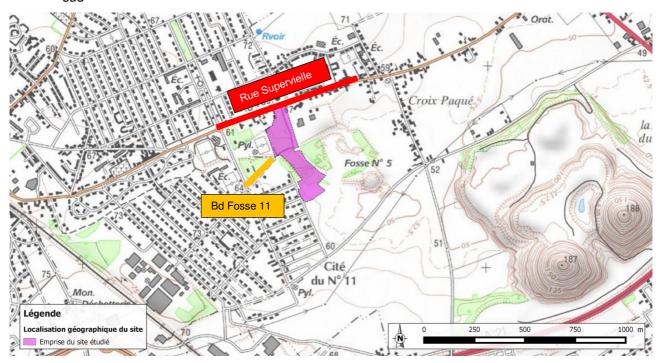


Figure 1 : Localisation géographique du site étudié (source Géoportail)

Le site est actuellement densément végétalisé et correspond à un lieu de promenade. L'accès au site se fait par la rue Supervielle et par le boulevard de la Fosse 11.

Le site est bordé par (Figure 2 en page suivante) :

- <u>au nord</u> : la rue Supervielle, puis des logements, une salle communale et une entreprise de pièces détachées automobiles ;
- <u>au sud</u> : des espaces en friche végétalisés, des chemins et parcelles agricoles. Un ancien terril actuellement arasé était présent à proximité immédiate au sud-est du site ;
- à l'est : une entreprise de dépôt-vente au nord-est, des espaces en friche végétalisés, des chemins et parcelles agricoles ;
- à l'ouest : des logements individuels avec jardins privatifs, des équipements sportifs.

Le site est inclus dans un tissu péri-urbain essentiellement résidentiel, associé à des parcelles agricoles et marqué par la présence d'anciens terrils miniers.

Réf: CSSPNO172503 / RSSPNO07255-01

¹ Nivellement Général de la France

Figure 2 : Vue aérienne de l'emprise étudiée

Le site appartient à un ancien ensemble minier recensé dans BASIAS sous les références :

- NPC6200318 : ancien terril conique n°59 exploité par la société des Houillères du Bassin du Nord et du Pas-de-Calais (HBNPC) ;
- NPC6200408 : carreau et terril de la fosse minière n°5 (HBNPC).

Les fiches BASIAS correspondantes sont présentées en Annexe 1.

Le site n'est pas recensé dans la base de données des Installations Classées pour la Protection de l'Environnement (ICPE).

D'après les données disponibles sur le site de la National Library of Scotland, qui recense les tranchées et les sapes de combat de la première guerre mondiale, le sud du site appartient à une ancienne zone de front (zone de l'ancien terril).

Des voies ferrées ont également été mises en évidence sur l'emprise du projet, au nord du site, ainsi qu'un puits de mine remblayé.

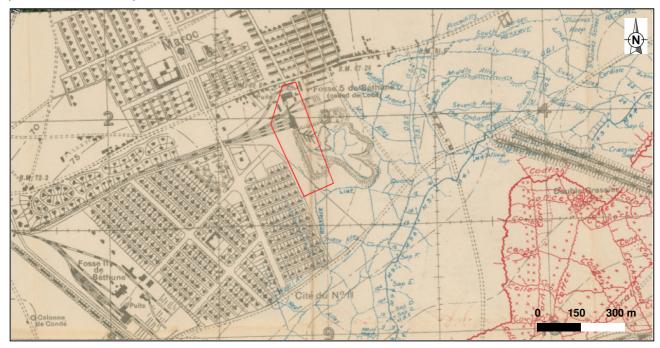


Figure 3 : Localisation des tranchées et sapes au droit de la zone d'étude (source National Library of Scotland)

D'après les informations transmises par CM-CIC IMMOBILIER lors de la visite du site, l'EPF Nord-Pas de Calais a réalisé en 1990 le régalage d'une partie du terril et de l'ensemble de la zone concernée par les anciennes installations minières.

3. Projet d'aménagement

L'aménagement projeté (**Figure 4** en page suivante) au droit du site prévoit la réalisation d'un ensemble immobilier comprenant :

- 79 logements individuels avec jardins privatifs (y compris lots en accession sociale);
- 4 immeubles de logements collectifs ;
- des voiries, espaces verts collectifs et jardins partagés.

Notons que sur ce plan figure l'emplacement du puits de la fosse n°5 bis et du périmètre de sécurité associé.

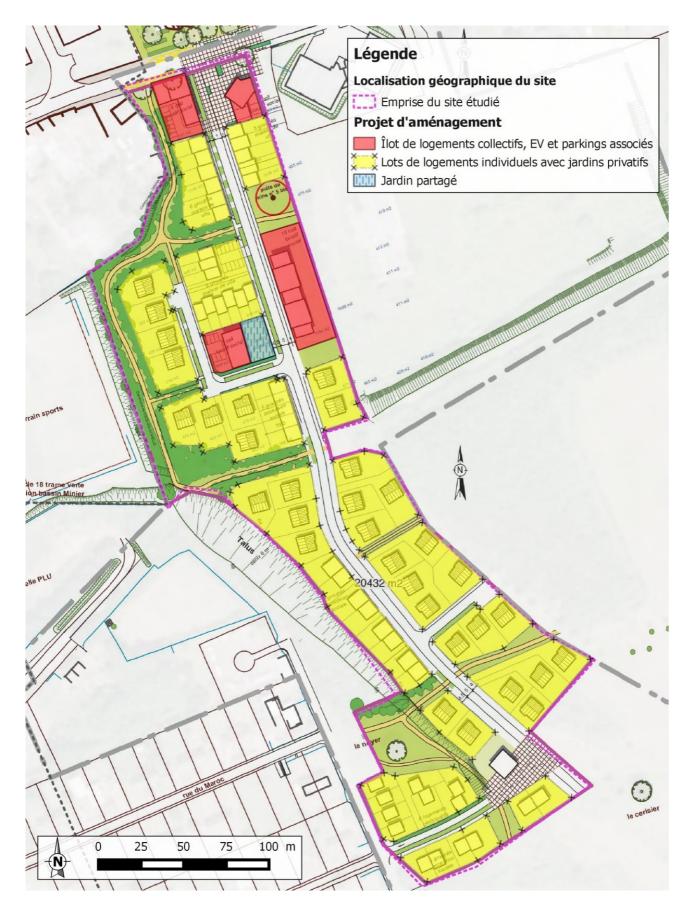


Figure 4 : Plan du projet d'aménagement (source Lejail et Associés, 2005)

4. Synthèse des études antérieures

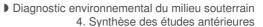
GINGER CEBTP est intervenu pour le compte de la Mairie de Loos-en-Gohelle (62) en 2014 au droit de l'emprise projetée pour l'aménagement de la Zone d'Activités Concertée (ZAC) dite « Quartier Ouest » pour la réalisation des études suivantes :

- étude historique et documentaire ainsi qu'un diagnostic initial de la qualité des sols et des eaux souterraines² :
- étude géotechnique préalable³.

La zone d'étude concernée par cette étude initiale correspond à une emprise plus large que l'objet de la présente étude. La synthèse de l'étude antérieure est par conséquent adaptée à l'emprise étudiée dans le présent rapport.

Données historiques et contexte environnemental

Les données historiques et le contexte environnemental de la zone étudiée sont présentés dans le **Tableau 1** ci-dessous.


Tableau 1 : Synthèse des données historiques et du contexte environnemental (GINGER CEBTP)

Thématique	Eléments mis en évidence
	La géologie du secteur d'étude est donnée par l'ouvrage référencé 00197X0398 dans la BSS et profond de 163 m :
	• 0 – 1 m : remblais ;
	• 1 – 4 m : limons argilo-sableux bruns ;
	 4 – 131 m : Craie blanche du Sénonien et du Turonien supérieur ;
Contexte géologique	131 – 169 m : alternance de tourbe et de schistes.
	La formation crayeuse peut être affleurante sur la partie nord du site. De plus, l'épaisseur de remblais peut être variable selon les secteurs, en fonction des terrassements réalisés dans le cadre de l'arasement de l'ancien terril.
	Un ancien puits de mine est recensé au droit de l'emprise du projet, au nord. Il s'agit de la fosse n°5 bis dite « de Béthune », profonde de 734 m et d'un diamètre de 7,1 m. Ce puits a été remblayé entre 1973 et 1996; une dalle béton a été coulée en tête d'ouvrage. Aucune information concernant d'éventuelles servitudes d'utilité publique ne nous ont été transmises.
	La première nappe rencontrée au droit du site est contenue dans la Craie du Sénonien. Son niveau est attendu vers 30 à 35 m de profondeur par rapport au terrain naturel et son écoulement est dirigé du sud-ouest vers le nord-est. Cette nappe est alimentée par les eaux météoriques au niveau des affleurements ou par percolation au travers des formations superficielles.
Contexte hydrogéologique	Cette nappe est peu vulnérable vis-à-vis d'une pollution de surface, compte-tenu de sa profondeur et du caractère argileux des limons superficiels. Néanmoins, les anciennes activités minières ont pu être à l'origine d'impacts sur les eaux souterraines de la nappe de la Craie.
	Aucun forage d'alimentation en eau n'est recensé en aval hydraulique du site, dans un rayon de 1 000 m.
Contexte hydrologique	Aucun cours d'eau n'est recensé à proximité de la zone d'étude. Le cours d'eau le plus proche est le Surgeon, situé à environ 4 km au nord-ouest du site.
Risque d'inondation	L'aléa lié aux remontées de nappe est considéré comme faible au droit de la zone d'étude.
Zones naturelles sensibles	Le site étudié n'est pas inclus dans une zone naturelle sensible

Réf : CSSPNO172503 / RSSPNO07255-01 LBO / PJT / EL 30/11/2017 Page 11/33

² Dossier GINGER CEBTP NREP.E025 – E.0063 du 24/11/2014 et intitulé « Etude de pollution des sols de la ZAC Quartier Ouest »

³ Dossier GINGER CEBTP NBE2.E0206 – 14CR1V2BE du 24/10/2014 et intitulé « Etude géotechnique préalable – principes généraux de construction (G1-PGC) »

Etude historique

Le site étudié est localisé sur l'emprise des anciennes installations minières des carreaux des fosses n°5 et 5bis de Béthune, exploitées par les Houillères du Bassin du Nord et du Pas-de-Calais (HBNPC) entre 1875 et les années 1970. Le site en friche a par la suite fait l'objet de démantèlement et de remblaiements entre les années 1970 et 1990, puis est resté un espace végétalisé non exploité depuis.

Au droit du site étudié, les installations historiques suivantes sont recensées :

secteur nord :

- des ateliers ;
- des bureaux ;
- une lampisterie (stockage et entretien des lampes);
- un bâtiment recevant les bains-douches ;
- une maison de gardien ;
- un bâtiment d'extraction ;
- une salle de machines (contiguë au bâtiment d'extraction, hors emprise étudiée);
- une zone de triage mécanique ;
- l'ancien puits de mine n°5bis, aujourd'hui remblayé ;
- des anciennes galeries minières ;
- d'anciennes voies ferrées ;

secteur sud :

- une partie du terril n°59, aujourd'hui arasé ;
- d'anciens corons (habitats).

D'après l'étude historique et documentaire, d'anciennes galeries minières remblayées sont présentes au nord du site (profondeur et caractéristiques non connues).

La localisation des installations historiques mises en évidence à l'issue de l'étude historique et documentaire est présentée en **Figure 5**.

Diagnostic initial de pollution

Suite à l'étude historique et documentaire, GINGER CEBTP est intervenu en octobre 2014 au droit de l'emprise étudiée pour la réalisation d'investigations sur les sols et les eaux souterraines (sondages environnementaux et géotechniques).

Les investigations initiales ont été principalement implantées en fonction du projet d'aménagement de l'époque, de la présence de réseaux et des contraintes d'accès.

Au droit de la zone étudiée, les investigations sur le milieu souterrain ont été :

milieu sols :

- la réalisation de 6 sondages à la tarière mécanique à 2 m de profondeur, le long de l'actuel chemin de promenade (sondages ST25 à ST30) ;
- la réalisation d'une fouille à la pelle mécanique à 2 m de profondeur au sud-ouest du site (PM5) ;
- l'échantillonnage et les analyses sur les sols ;
- milieu eaux souterraines: la pose d'un piézomètre de 40 m de profondeur captant la nappe de la Craie (PZ2), le prélèvement et l'analyses des eaux souterraines.

Cet ouvrage a été posé en association avec deux autres piézomètres de 40 m de profondeur (PZ1 et PZ3) situés hors de l'emprise actuelle du projet.

Les investigations réalisées indiquent 4:

milieu sols :

- une anomalie de concentration en mercure au droit de PM5 dans les terrains superficiels compris entre 0,2 et 0,4 m de profondeur (teneur égale à 7,02 mg/kg MS);
- au droit de l'ensemble des sondages (ST25 à ST30) : plusieurs dépassements du bruit de fond régional en métaux dans les remblais superficiels (à mettre en lien avec les terrassements réalisés suite à l'arasement du terril n°59) : dépassements en cuivre, mercure, nickel, molybdène et zinc ;
- au droit de ST28, la présence d'hydrocarbures C₁₀-C₄₀ entre 0 et 1 m de profondeur (832 mg/kg MS), associé à une teneur en naphtalène supérieure au bruit de fond anthropique (0,22 mg/kg MS).
 - La concentration en hydrocarbures s'atténue verticalement à partir de 1,4 m de profondeur (519 mg/kg MS entre 1,4 et 2,0 m) ;
- une anomalie de concentration en hydrocarbures C₁₀-C₄₀ est également observée en ST30 entre 0,6 et 1,1 m, dans les remblais limono-sableux (108 mg/kg MS).

• milieu eaux souterraines :

- à l'exception de traces en métaux et en hydrocarbures C₁₀-C₄₀, aucun impact n'est mis en évidence pour les paramètres recherchés ;
- le sens d'écoulement local est défini en octobre 2014 du sud-ouest vers le nord-est.

Ces investigations et les anomalies de concentrations mises en évidence dans les sols sont localisées en **Figure 5** en page suivante (teneurs en hydrocarbures inférieures à 100 mg/kg MS non présentées).

Les résultats des analyses réalisées sont présentés en **Annexe 2**. Les coupes techniques des sondages et du piézomètre PZ2 sont présentées en **Annexe 3**.

Réf : CSSPNO172503 / RSSPNO07255-01 LBO / PJT / EL 30/11/2017 Page 13/33

⁴ Actualisation des valeurs de référence par comparaison des teneurs en métaux aux valeurs de bruit de fond du référentiel pédogéochimique ISA/INRA 2002 (concentrations dans les limons)

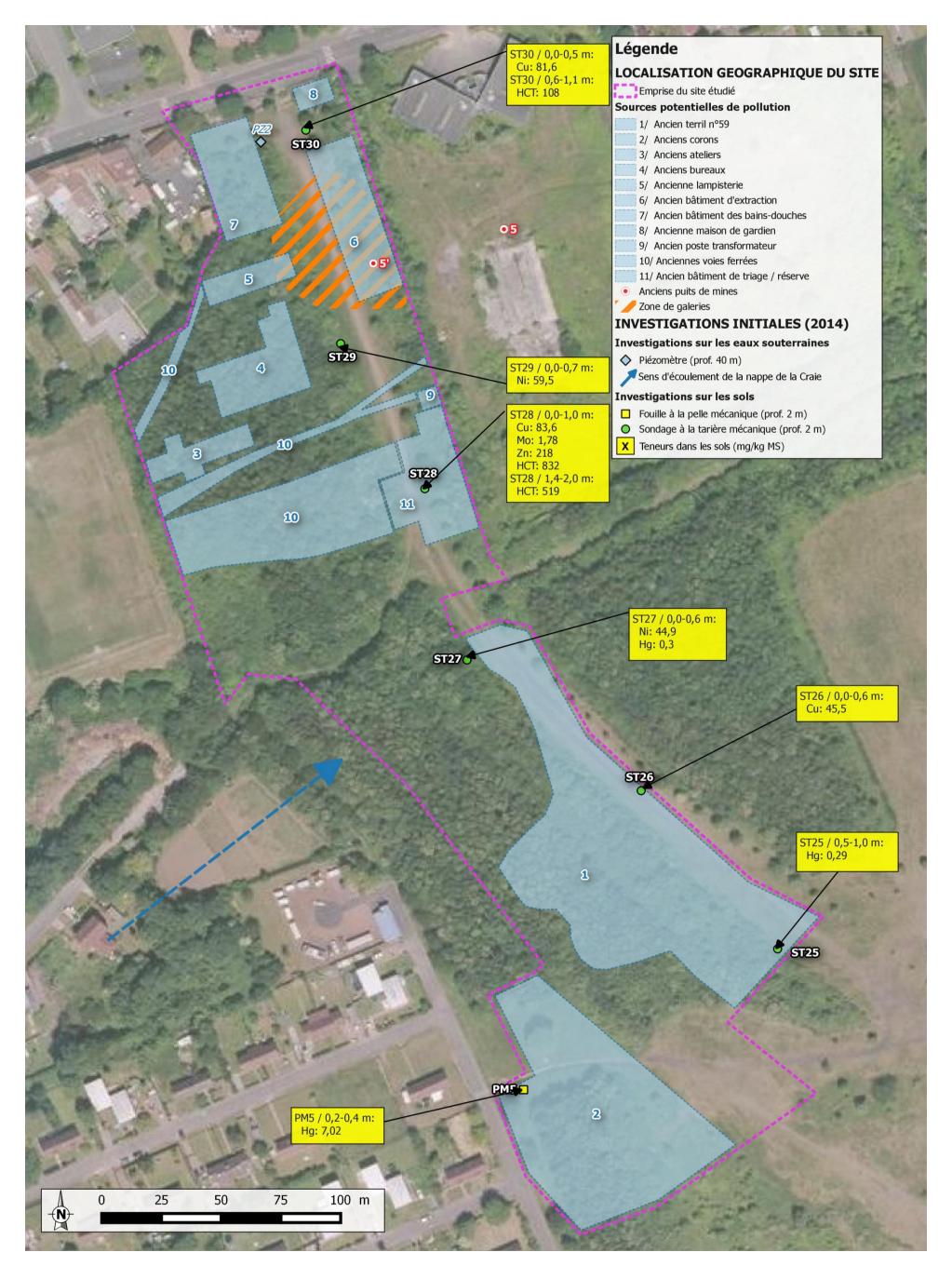


Figure 5 : Localisation des installations historiques, investigations initiales et anomalies de concentration (GINGER CEBTP, 2014)

5. Investigations sur les sols (A200)

5.1 Objectifs des investigations

Les investigations sur les sols ont pour objectifs :

- de compléter l'état de connaissance de la qualité environnementale du site au droit des zones non investiguées précédemment, notamment au niveau des sources potentielles de pollution mises en évidence dans l'étude historique et documentaire;
- de vérifier la compatibilité du site avec le projet d'aménagement.

5.2 Nature des investigations

Les investigations sur les sols ont consisté en 21 sondages au carottier portatif entre 1,5 et 2 m de profondeur, réalisés par la société ATME les 6 et 07/11/2017.

Les sondages ont été suivis dans leur intégralité par un ingénieur de BURGEAP qui a procédé à l'échantillonnage des sols. Après prélèvement, les sondages ont été rebouchés avec les déblais de forage.

Chaque point de sondage a fait l'objet d'une détection pyrotechnique préalable par la société CARDEM et a été géo-référencé par GPS en X et en Y.

Remarques:

- en raison de la densité de végétation, les sondages SC7 et SC9 initialement prévus au droit des anciennes voies ferrées à l'ouest du site n'ont pu être réalisés. Pour cette même raison et comptetenu de l'impossibilité d'accéder à l'ensemble du site, l'implantation des sondages a été révisée au démarrage du chantier;
- la profondeur du sondage SC4 a été limitée à 1,5 m au lieu des 2 m initialement prévus en raison d'un refus;
- le sondage SC5 initialement prévu au droit d'anciennes voies ferrées n'a pu être réalisé suite à plusieurs refus successifs à 0,5 m de profondeur.

Les investigations menées sur site sont celles décrites dans le **Tableau 2** en page suivante. Elles sont localisées en **Figure 6**.

On présente en **Annexe 7** les propriétés chimiques des principaux polluants susceptibles d'être présents et en **Annexe 8** un glossaire.

Tableau 2 : Investigations réalisées sur les sols

Milieux reconnus	Prestations	Installations historiques	Projet	Sondage	Prof. (m)	Remarques
		Ancien bâtiment des bains-douches	Futurs logements collectifs	SC1		-
		-	Futurs togetherits collectifs	SC2	2 m	-
		Zone de galeries	Future voirie	SC3		-
		Ancien bâtiment d'extraction	Futurs logements individuels	SC4	1,5 m	Refus à 1,5 m de profondeur
		Anciennes voies ferrées	Future voirie	SC5		Refus
		-	Futurs logements collectifs	SC6		-
			Futurs logements individuels	SC7		Accès impossible
		Anciennes voies ferrées	Future voirie	SC8		-
			Futurs logements individuels	SC9		Accès impossible
		Ancien bâtiment de triage/réserve	Futurs logements collectifs	SC10		-
				SC11		-
Sols	Sondage au carottier portatif	-		SC12	- 2 m	-
3015	Echantillonnage de sols		Futurs logements individuels	SC13		-
			Tuturs togetherits marviacets	SC14		-
		Ancien terril n°59		SC15		-
				SC16		-
		Anciens corons	Futur espace vert collectif	SC17		-
		Ancien terril n°59		SC18		-
		Ancien tem n 59	Futurs logements individuels	SC19		-
		-		SC20		-
		Anciens corons	Futur espace vert collectif	SC21		-
		Ancien terril n°59	Futurs logements individuels	SC22		-
		Anciens corons	Future voirie	SC23		-
		-	Futurs logements individuels	SC24		-

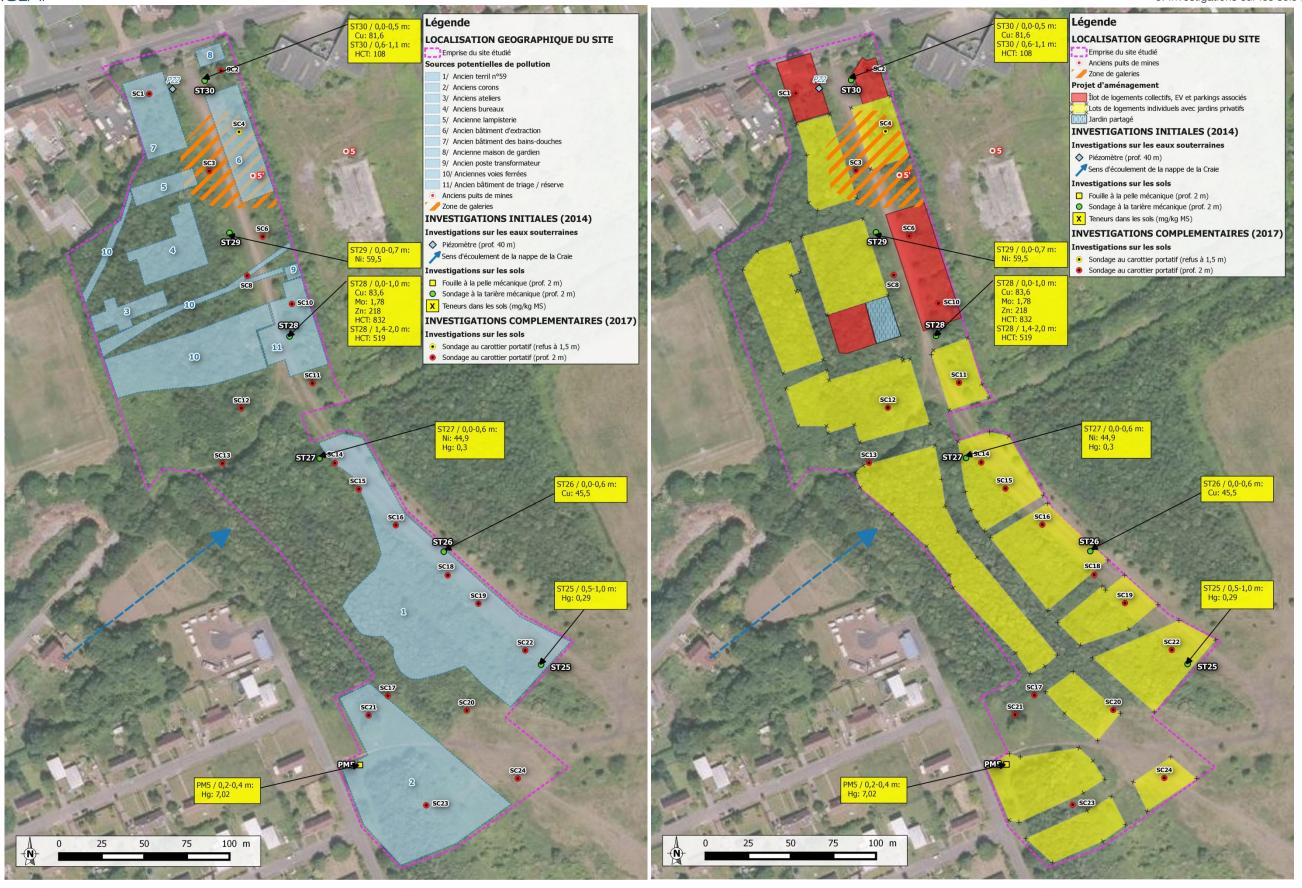


Figure 6 : Localisation des investigations complémentaires réalisées sur les sols (BURGEAP, 2017) et rappel des données collectées lors du diagnostic initial (Ginger CEBTP 2014)

5.3 Observations et mesures de terrain

Les terrains recoupés lors de la réalisation des sondages ont été décrits avant échantillonnage. Une partie des échantillons a fait l'objet d'analyses chimiques en laboratoire. Les descriptions ont porté sur leur lithologie et la présence ou non de niveaux jugés suspects.

La présence de composés organiques volatils dans les gaz des sols et au niveau de chaque échantillon prélevé a en effet été évaluée au moyen d'un détecteur à photo-ionisation (PID) équipé d'une lampe 10,6eV et calibré au démarrage du chantier.

Les niveaux de sol sont jugés suspects s'ils présentent des traces de souillures, des caractéristiques organoleptiques anormales (odeur, couleur, texture), des réponses positives au PID ou qu'ils renferment des matériaux de type déchets, mâchefers, verre, bois....

Au regard des observations réalisées au cours des investigations, la succession des lithologies au droit du site est la suivante, sous une épaisseur de terre végétale :

- des remblais de schistes noirs, sur une épaisseur variable comprise entre 0,5 et 2 m de profondeur et comprenant ponctuellement des passées de graviers, de sable noir et de cassons de briques rouges;
- un horizon limoneux marron contenant des éclats de craie, d'épaisseur variable (de 0,5 à 1,5 m).
 Ces limons sont affleurant au droit des sondages SC17 et SC21 (absence de remblais de schistes noirs);
- de la craie.

Ces lithologies concordent avec les terrains rencontrés lors des investigations de 2014 et avec la description de l'ouvrage 00197X0398 de la BSS, situé à proximité. Aucun niveau suspect n'a été identifié lors des investigations sur les sols. Les tests de terrain n'ont mis en évidence aucune mesure significative.

L'intégralité des observations figure dans les fiches d'échantillonnage de sols présentées en Annexe 4.

5.4 Stratégie et mode opératoire d'échantillonnage

Après le levé de la coupe du sondage, le collaborateur de BURGEAP a procédé au prélèvement des échantillons de sols selon le protocole détaillé ci-après :

- un échantillon pour chaque horizon lithologique homogène ;
- ou un échantillon par mètre, si l'épaisseur de l'horizon dépasse 1 m ;
- ou un échantillon de chaque niveau lithologique suspect.

Une fois prélevé, les échantillons ont été conditionnés dans un flaconnage adapté aux analyses et fourni par le laboratoire.

5.5 Conservation des échantillons

Après description, conditionnement et étiquetage, les échantillons de sol ont été stockés en glacière jusqu'à leur arrivée au laboratoire ou au réfrigérateur dans les locaux de BURGEAP. Les échantillons ont été prélevés les 6 et 07/11/2017, et expédiés au laboratoire d'analyses le 07/11/2017. Le délai de transport n'a pas excédé 48h.

5.6 Programme analytique sur les sols

Les analyses chimiques ont été réalisées par le laboratoire EUROFINS.

Les échantillons soumis à analyse en laboratoire ont été choisis en fonction des observations de terrain, de leur proximité d'une installation potentiellement polluante ayant pu avoir un impact sur les milieux étudiés et du projet d'aménagement.

Les méthodes analytiques, les limites de quantification et le descriptif du flaconnage utilisé figurent en **Annexe 5**.

Tableau 3 : Analyses réalisées sur les échantillons de sols

Source potentielle de pollution / installation historique	Projet	Sondage	Echantillon	Profondeur	Matrice	Paramètres
Ancien bâtiment des bains-douches	Entropy In contract to all and the	SC1	SC1.1	0,0-1,0 m	Remblais	Desta IODI. 10 m fform
-	Futurs logements collectifs	SC2	SC2.1	0,0-1,0 m	Remblais	Pack ISDI + 12 métaux
Zone de galeries	Future voirie	SC3	SC3.1	0,0-1,0 m	Remblais	Lhadracarburas C. C. LIAD DTEV COLIV Confidence
Anaign hâtiment d'extraction	Future legements individuals	504	SC4.1	0,0-0,5 m	Remblais	Hydrocarbures C ₁₀ -C ₄₀ , HAP, BTEX, COHV, 8 métaux
Ancien bâtiment d'extraction	Futurs logements individuels	SC4	SC4.2	1,0-2,0 m	Remblais	Phénols, cyanures totaux
-	Futurs logements collectifs	SC6	SC6.1	0,0-1,0 m	Remblais	Pack ISDI + 12 métaux
Anairman union faméro	Fortune contrib	600	SC8.1	0,0-1,0 m	Remblais	8 métaux, HAP, Phénols, cyanures totaux
Anciennes voies ferrées	Future voirie	SC8	SC8.2	1,0-2,0 m	Remblais	Hydrocarbures C ₁₀ -C ₄₀ , HAP, BTEX, COHV
Anning le Stimmant de tuin and /réannin	Fukura la sansanta adlastifa	0010	SC10.1	0,0-1,0 m	Remblais	Hydrocarbures C ₁₀ -C ₄₀ , HAP, BTEX, COHV, 8 métaux
Ancien bâtiment de triage/réserve	Futurs logements collectifs	SC10	SC10.2	1,0-2,0 m	Remblais	Phénols, cyanures totaux
			SC11.1	0,0-0,5 m	Remblais	Pack ISDI + 12 métaux
		SC11	SC11.2	0,5-1,0 m	Sable noir	Lhidraearhurae C. C. LIAD DTEV COLIV
			SC11.3	1,0-2,0 m	Remblais	Hydrocarbures C ₁₀ -C ₄₀ , HAP, BTEX, COHV
-		0010	SC12.1	0,0-0,6 m	Remblais	Pack ISDI + 12 métaux
	Futurs logements individuels	SC12	SC12.2	0,6-0,9 m	Remblais	Hydrocarbures C ₁₀ -C ₄₀ , HAP, BTEX, COHV
		SC13	SC13.1	0,0-0,9 m	Remblais	
		SC14	SC14.1	0,0-1,0 m	Remblais	Hydrocarbures C ₁₀ -C ₄₀ , HAP, BTEX, COHV, 8 métaux
Ancien terril n°59		SC15	SC15.1	0,0-1,0 m	Remblais	
		SC16	SC16.1	0,0-1,0 m	Remblais	Pack ISDI + 12 métaux
Anciens corons	Futur espace vert collectif	SC17	SC17.1	0,0-0,8 m	Limon	Lhadracarburga C. C. LIAD DTEV COLIV 0 artitages
		0010	SC18.1	0,0-0,5 m	Remblais	Hydrocarbures C ₁₀ -C ₄₀ , HAP, BTEX, COHV, 8 métaux
Ancien terril n°59	Future le remente individuele	SC18	SC18.2	0,5-2,0 m	Limon	Phénols, cyanures totaux
	Futurs logements individuels	SC19	SC19.1	0,0-1,0 m	Remblais	Hydrocarbures C ₁₀ -C ₄₀ , HAP, BTEX, COHV
-		SC20	SC20.1	0,0-1,0 m	Remblais	
Anciens corons	Futur espace vert collectif	SC21	SC21.1	0,0-1,0 m	Limon	Pack ISDI + 12 métaux
Ancien terril n 950	Future legements individuels	5000	SC22.1	0,0-0,9 m	Remblais	
Ancien terril n°59	Futurs logements individuels	SC22	SC22.2	1,2-2,0 m	Remblais	Phénols, cyanures totaux
Anciens corons	Future voirie	SC23	SC23.1	0,0-0,5 m	Remblais	Deale ICDL - 10 m fterm
-	Futurs logements individuels	SC24	SC24.1	0,0-1,0 m	Remblais	Pack ISDI + 12 métaux

5.7 Valeurs de référence pour les sols

Conformément aux recommandations des circulaires ministérielles de février 2007, les concentrations dans les sols au droit de la zone d'étude ont été comparées à des concentrations caractéristiques du bruit de fond.

Ces valeurs de comparaison sont présentées dans les premières colonnes des tableaux de présentation des résultats d'analyse.

Pour les **métaux et métalloïdes**, la gamme de concentrations qui sera utilisée pour comparaison est celle mise en évidence dans les sols naturels ordinaires <u>du territoire Nord-Pas de Calais</u> (sans anomalie géochimique) dans le cadre du fond pédo-géochimique régional ISA/INRA 2002. A défaut, nous utiliserons également les valeurs proposées par l'ATSDR (Agency for Toxic Substances and Disease Registry).

Pour les **HAP**, en l'absence de données locales, les valeurs de référence qui seront utilisées sont extraites de l'ATSDR (Toxicological profile for PAHs, 1995 et 2005) et des fiches toxicologiques de l'INERIS pour des sols urbains.

Pour les autres composés, en l'absence de valeurs caractérisant le bruit de fond, un simple constat de présence ou d'absence a été réalisé en référence à des teneurs supérieures ou inférieures aux limites de quantification du laboratoire.

Parallèlement, afin d'appréhender la gestion de terres qui pourraient être excavées lors du réaménagement, les concentrations sur le sol brut et sur l'éluat ont été comparées :

- aux critères d'acceptation définis dans l'arrêté du 12 décembre 2014 relatif aux déchets inertes;
- à la Décision du Conseil du 19 décembre 2002 « établissant des critères et des procédures d'admission des déchets dans les décharges, conformément à l'article 16 et à l'annexe II de la directive 1999/31/CE » ;
- aux valeurs couramment utilisées par les exploitants d'installations de stockage de déchets. Il s'agit ici de données issues de notre expérience et de notre connaissance du marché local.

Rappelons que les critères de définition des filières d'élimination n'ont pas tous valeur réglementaire et que l'acceptation des terres dans un centre de stockage de déchets dépend de l'accord de l'exploitant, derniers décisionnaires quant à l'acceptation des terres au regard de ses arrêtés préfectoraux et de sa stratégie d'exploitation de son installation.

5.8 Résultats et interprétation des analyses sur les sols

Les résultats d'analyse sont synthétisés dans les tableaux en pages suivantes.

Les bordereaux des analyses réalisées dans le cadre de ce diagnostic sont présentés en Annexe 6.

Tableau 4 : Résultats d'analyses sur les sols bruts (1/4)

AMALYSES SUR SOL BRUT ***CATTON OF THE PROPERTY OF THE PROPER							B						
Part				•			Projet	Log. Coll.	Log. Coll.	Voirie	Log. Indiv.	Log. Indiv.	Log. Coll.
Mary Decomposition Decom							_						
MALVESS SUI SOL BRUT				Bruit de	Valeurs limite de								
AMALYSES SUR SQL, PRINT ***Core 196		Unités	LQ					Remblais	Remblais	Remblais	Remblais	Remblais	Remblais
MAIL STATES SUR SOL BRUT						(IODIAD)		-	-	-	-	-	-
Marie State Marie Marie Marie Marie State Mari	ANALYSES SUR SOL BRUT											<u> </u>	
Company and Property	Matière sèche	%	0,1	-	-	-		94,8	89,9	84,6	92,5	85,3	87,8
March Marc													
Contract		mg/kg Ms	0,4		30 000	-		106 000	153 000	-	-	-	153 000
Control Cont		ma/ka Ms	1	1.5				<	<	-	-	-	<
Second											<	-	
Campa 1	Baryum (Ba)		1	3000				165	234	-	-	-	
Common					Résultats de liviviation								
March Marc								,					
Secretical Secretical Control of										· ·			,
Section Company Comp												-	
Comment Comm			1	38,6	14.10.00 44 12/12/2011	dangereux					<	-	
Column C										·			
Section Sect													
PRINCE OF COST PROMES 4 10		mg/kg ivis	5	205				153	117	45,4	<	-	254
Part of 1622	-	mg/kg Ms	4	LQ	-	-		<	3,71	38,1	3,8	-	4,01
Page	Fraction C16-C22			LQ	-				8,38	61,1	7	1	24,5
Somme de Appropried and CO-COUNT 198 19 10 10 10 10 10 10 10					-								
Segretaries					-						,		
September Personal Programs Color Colo	,	mg/kg Ms	15	LQ	500	5 000		<	30,4	210	41,1	-	138
Accordance		mg/kg Ms	0,05	0,15	-	-		0,066	<	<	0,07	-	0,065
Process	·				-	-					· · · · · · · · · · · · · · · · · · ·		
Photographics 0,000 1,000				-	-	-		<	<		<	-	<
Americans					-								
Process					-								
Paper					-						· · · · · · · · · · · · · · · · · · ·		
Comparison					-								
Description for the content of the	Benzo(a)anthracène		0,05	-	-	-			,			-	
Second Hardware	-				-								
Board England													
Description Project Color Colo					-						· · · · · · · · · · · · · · · · · · ·	1	
Basson B					-				·				
Somme des NAP			0,05	-	-	-						-	
STEK			0,05		-								
Service		mg/kg Ms		25	50	500		0,9	0,64	3,3	1,5	-	1,6
Touhine		ma/ka Me	0.05	IO		_						_	
England mg/kg Me 0.05					-								
Oxylen	Ethylbenzène		0,05	LQ	-	-		0,05			<	-	<
Somme des BTEX					-	-			<	<	<	-	
Autres Paramètres					-								
Indee plated Indee		mg/kg Ms	0,05	LQ	6	30		0,77	<	<	<	-	0,06
Comment of totals		mg/kg Ms	0,5	LQ	-	-		-	-	-	-	<	-
Tetrachordhykne				LQ				-	-	-	-		-
Treibrorethylvine myte 18 0,055 LO 0													
cs 1 2-0-bit/condity/sine mg/kg Ms 0,1 LQ -					-							1	
Trans-1 2 dehthorofthyline													
1.1-Dichloroethylane					-								
Chloroforme			0,1	LQ	-				-			-	-
Tetrachlorométhane					-							1	1
1.1-Dichloroéthane					-								
1,2-dichloroéthane													
1,1,1-trichforoéthane	· ·				-								
Chiorure de vinyle				LQ	-	-							
Bromochlorométhane					-							+	
Dibromométhane	•				-								
Bromodichlorométhane													
Dibromochlorométhane					-								
Bromforme (tribromométhane)				LQ	-							-	-
Somme des COHV					-	-							
PCB mg/kg Ms 0,01 LQ -					- 0.49			-				1	-
PCB (28) mg/kg Ms 0,01 LQ -		mg/kg Ms		LQ	2 (1)	10			-	-	-	-	-
PCB (52) mg/kg Ms 0.01 LQ - - - - - -		ma/ka Ms	0,01	LQ	-	-		<	<	-	-	-	<
FCB (101) mg/kg Ms 0,01 LQ -											-		1
PCB (138) mg/kg Ms 0,01 LQ - - - - - PCB (153) mg/kg Ms 0,01 LQ - - - - - PCB (180) mg/kg Ms 0,01 LQ -					-								
PCB (153) mg/kg Ms 0,01 LQ - - - - - PCB (180) mg/kg Ms 0,01 LQ -					-								
PCB (180)					-								1
Somme des PCB mg/kg Ms - LQ 1 50 -											1		
											ł	1	
	LQ: limite de quantification analytique du laboratoire / <:	teneur inférieur	eàlaLQ / -:	paramètre non	analysé								

⁽a) [Pour l'acceptation en ISDI], une valeur limite plus élevée peut être admise, à condition que la valeur limite de 500 mg/kg de matière sèche soit respectée pour le carbone organique total sur éluat, soit au pH du sol, soit pour un pH situé entre 7,5 et 8,0. (b) Valeurs en gras : source = Teneurs totales en éléments traces métalliques dans les sols de la région NPDC, ISA/INRA 2002. En italique : source = ATSDR

Réf: CSSPNO172503 / RSSPNO07255-01

⁽c) Si el déchet ne respecte pas au moins une des valeurs fixées pour le chiorure, le sulfate ou la fraction soluble, le déchet peut être encore jugé conforme aux critères d'admission [en ISDI] s'il respecte soit les valeurs associées au chlorure et au sulfate, soit celle associée à la fraction (f) valeur non réglementaire mais parfois appliquée par les gestionnaires d'ISDI concentration supérieure au bruit de fond et inférieure aux limites de catégorie A1

Tableau 5 : Résultats d'analyses sur les sols bruts (2/4)

						Projet	Voirie	Voirie	Log. Coll.	Log. Coll.	Log. Indiv.	Log. Indiv.	Log. Indiv.
						Sondage	SC8.1	SC8.2	SC10.1	SC10.2	SC11.1	SC11.2	SC11.3
	Unités	LQ	Bruit de	Valeurs limite de	valeurs limites de catégorie B1	Profondeur (m) Lithologie	0,0-1,0 m Remblais	1,0-2,0 m Remblais	0,0-1,0 m Remblais	1,0-2,0 m Remblais	0,0-0,5 m Remblais	0,5-1,0 m Sable noir	1,0-2,0 m Remblais
			fond (b)	catégorie A1 (ISDI)	(ISDND)	Indices	=	-	=	-	-	-	-
ANALYSES SUR SOL BRUT						organoleptiques							
Matière sèche COT	%	0,1	-	-	-		87,9	95,7	89,3	93,8	95,4	93	92,6
COT Carbone Organique Total (a)	mg/kg Ms	0,4	-	30 000	-		-	-	-	-	113 000	-	-
Métaux et métalloïdes Antimoine (Sb)	mg/kg Ms	1	1,5				-	-		-	<	-	-
Arsenic (As) Baryum (Ba)	mg/kg Ms mg/kg Ms	1	33 3000				18,6	-	20,5	-	23,4 171	-	-
Cadmium (Cd)	mg/kg Ms	0,4	1,36	Résultats de lixiviation	Tests de lixiviation		<	-	1,61	-	1,47	-	-
Chrome (Cr) Cuivre (Cu)	mg/kg Ms mg/kg Ms	5 5	78,1 74	conformes aux seuils définis pour les	conformes à la Décision du Conseil		20,7 60,8	-	14 86,1	-	29,1 119	-	-
Mercure (Hg) Molybdène (Mo)	mg/kg Ms mg/kg Ms	0,1	0,27	déchets inertes dans l'arrêté du 12/12/2014	du 19/12/02 pour les déchets non		0,18 -	-	0,26	-	2,41 1,82	-	-
Nickel (Ni) Plomb (Pb)	mg/kg Ms mg/kg Ms	1 5	38,6 198,1		dangereux		25,7 45,7	-	33,2 153	-	43,9 102	-	-
Sélénium (Se)	mg/kg Ms	1	0,7				-	-		-	1,4	-	-
Zinc (Zn) Indice hydrocarbure C10-C40	mg/kg Ms	5	205				60,4		811		130		
Fraction C10-C16 Fraction C16-C22	mg/kg Ms mg/kg Ms	4	LQ LQ	-	-		-	9,67 15,8	73 146	-	6,99 2,24	195 150	29,3 47,1
Fraction C22-C30 Fraction C30-C40	mg/kg Ms mg/kg Ms	4	LQ LQ	-	-		-	16,1 6,92	345 128	-	43,7 376	297 40,1	49,2 20,1
Somme des hydrocarbures C10-C40	mg/kg Ms	15	LQ	500	5 000		-	48,4	692	-	429	682	146
HAP Naphtalène	mg/kg Ms	0,05	0,15	-	-		0,31	<	0,27	-	<0.21	0,2	0,055
Acénaphtylène Acénaphtène	mg/kg Ms mg/kg Ms	0,05 0,05	-	-	-		< 0,27	< <	0,78 0,17	-	<0.23 <0.27	< 0,087	< <
Fluorène	mg/kg Ms	0,05	-	-	-		0,19	< 0,19	0,23 2,4	-	<0.23 <0.27	0,12 1,2	< 0,47
Phénanthrène Anthracène	mg/kg Ms mg/kg Ms	0,05 0,05	-	-	-		0,28	<	1,4	-	<0.27	<	0,056
Fluoranthène Pyrène	mg/kg Ms mg/kg Ms	0,05 0,05	-		-		1,8 1,5	0,11 0,15	3,3 3,2	-	<0.23 <0.23	0,19 0,19	0,24 0,33
Benzo(a)anthracène Chrysène	mg/kg Ms mg/kg Ms	0,05	-	-	-		1 1,4	0,1	3 3,2	-	<0.23 <0.3	0,2 0,24	0,21 0,31
Benzo(b)fluoranthène	mg/kg Ms	0,05	-	-	-		1,4	0,11	3,4	-	<0.27	0,22	0,28
Benzo(k)fluoranthène Benzo(a)pyrène	mg/kg Ms mg/kg Ms	0,05 0,05	-	-	-		0,55 0,99	< 0,058	1,6 2,5	-	<0.27 <0.23	< 0,12	0,053 0,11
Dibenzo(a,h)anthracène Benzo(g,h,i)pérylène	mg/kg Ms mg/kg Ms	0,05	-	-	-		0,3 0,56	< <	0,82 1,1	-	<0.26 <0.26	< 0,061	0,083
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,05	25	-	- - 500		0,78	0,053	2,1	-	<0.27	0,07	0,11
Somme des HAP BTEX	mg/kg Ms		25	50	500		13	0,87	29	-	<0.3	2,9	2,3
Benzène Toluène	mg/kg Ms mg/kg Ms	0,05 0,05	LQ LQ	-	-		-	<	<	-	<	< 0,1	<
Ethylbenzène	mg/kg Ms	0,05	LQ LQ	-	-		-	<	<	-	<	< 0,36	<
m,p-Xylène o-Xylène	mg/kg Ms mg/kg Ms	0,05 0,05	LQ	-	-		-	< <	< <	-	< <	0,08	<
Somme des BTEX Autres Paramètres	mg/kg Ms	0,05	LQ	6	30		-	<	<		<	0,54	<
Indice phénol Cyanures totaux	mg/kg Ms mg/kg Ms	0,5 0,5	LQ LQ	-	-		<	-	-	< <	-	-	-
2,6-Diméthylphénol	mg/kg Ms	0,025	LQ	-	-		<	-	-	-	-	-	-
3,4-Diméthylphénol 4-Ethylphénol (p-Ethylphénol)	mg/kg Ms mg/kg Ms	0,03 0,025	LQ LQ	-	-		<	-	-	-	-	-	-
3-Ethylphénol (m-Ethylphénol) Pentachlorophénol (PCP)	mg/kg Ms mg/kg Ms	0,02	LQ LQ	-	-		<	-	-	-	-	-	-
2,3,4-Trichlorophénol	mg/kg Ms	0,02	LQ	-	-		<	-	-	-	-	-	-
2,3,5-Trichlorophénol 2,3,6-Trichlorophénol	mg/kg Ms mg/kg Ms	0,02 0,02	LQ LQ	-	-		<	-	-	-	-	-	-
2,3-Dichlorophénol 2,4,6-Trichlorophénol	mg/kg Ms mg/kg Ms	0,02	LQ LQ	-	-		<	-	-	-	-	-	-
2-Chlorophénol 3,4-Dichlorophénol	mg/kg Ms mg/kg Ms	0,02	LQ LQ	-	-		< <	-	-	-	-	-	-
3,5-Dichlorophénol	mg/kg Ms	0,02	LQ	-	-		<	-	-	-	-	-	-
3-Chlorophénol 4-Chlorophénol	mg/kg Ms mg/kg Ms	0,02	LQ LQ	-	-		<	-	-	-	-	-	-
2,3,5,6-Tétrachlorophénol 2,6-Dichlorophénol	mg/kg Ms mg/kg Ms	0,02	LQ LQ	-	-		<	-	-	-	-	-	-
2,4 + 2,5 - Dichlorophénol	mg/kg Ms	0,05	LQ LQ	-	-		<	-	-	-	-	-	-
2,4,5-Trichlorophénol 3,4,5-Trichlorophénol	mg/kg Ms mg/kg Ms	0,02	LQ	-	-		<	-	-	-	-	-	-
2,3,4,6-Tetrachlorophénol (TeCP) 2,3,4,5-Tetrachlorophénol	mg/kg Ms mg/kg Ms	0,02 0,02	LQ LQ	-	-		< <	-	-	-	-	-	-
4-chloro-3-methylphénol 4-Méthylphénol (p-crésol)	mg/kg Ms	0,02	LQ LQ	-	-		< 0,048	-			-	-	-
Phénol	mg/kg Ms mg/kg Ms	0,15	LQ	-	-		<	-	-	-	-	-	-
2-Méthylphénol (o-crésol) 3-Méthylphénol (m-crésol)	mg/kg Ms mg/kg Ms	0,02 0,025	LQ LQ	-	-		<	-	-	-	-	-	-
2,5-Diméthylphénol 2,4-Diméthylphénol	mg/kg Ms mg/kg Ms	0,02 0,025	LQ LQ	-	-		< <	-	-	-	-	-	-
COHV			LQ							-	-		
Tetrachloroéthylène Trichloroéthylène	mg/kg Ms mg/kg Ms	0,05 0,05	LQ	-	-		-	< <	< <	-	-	<	<
cis 1,2-Dichloroéthylène Trans-1,2-dichloroéthylène	mg/kg Ms mg/kg Ms	0,1 0,1	LQ LQ	-	-		-	< <	< <	-	-	< <	< <
1,1-Dichloroéthylène Dichlorométhane	mg/kg Ms	0,1	LQ LQ	-	-		-	< <	< <		-	< <	< <
Chloroforme	mg/kg Ms mg/kg Ms	0,02	LQ	-	-		-	<	<	-	-	<	<
Tetrachlorométhane 1,1-Dichloroéthane	mg/kg Ms mg/kg Ms	0,02 0,1	LQ LQ	-	-		-	< <	< <	-	-	<	< <
1,2-dichloroéthane 1,1,1-trichloroéthane	mg/kg Ms mg/kg Ms	0,05 0,1	LQ LQ	-	-		-	< <	< <	-	-	< <	< <
1,1,2-Trichloroéthane	mg/kg Ms	0,2	LQ	-	-		-	<	<	-	-	<	<
Chlorure de vinyle Bromochlorométhane	mg/kg Ms mg/kg Ms	0,02	LQ LQ	=	-		-	< <	< <	-	-	<	<
Dibromométhane Bromodichlorométhane	mg/kg Ms mg/kg Ms	0,2 0,2	LQ LQ	-	-		-	< <	< <	-	-	< <	< <
Dibromochlorométhane	mg/kg Ms	0,2	LQ	-	-		-	<	<	-	-	<	<
1,2-Dibromoéthane Bromoforme (tribromométhane)	mg/kg Ms mg/kg Ms	0,05 0,2	LQ LQ	-	-		-	< <	< <	-	-	< <	< <
Somme des COHV PCB	mg/kg Ms	-	LQ	2 (f)	10		-		-	-			-
PCB (28)	mg/kg Ms	0,01	LQ	-	-		-	-	-	-	<	-	-
PCB (52) PCB (101)	mg/kg Ms mg/kg Ms	0,01 0,01	LQ LQ	-	-		-	-	-	-	< <	-	-
PCB (118) PCB (138)	mg/kg Ms mg/kg Ms	0,01 0,01	LQ LQ	-	-		-	-	-	-	< <	-	-
PCB (153)	mg/kg Ms	0,01	LQ LQ	-	-		-	-	-	-	<	-	-
PCB (180) Somme des PCB	mg/kg Ms mg/kg Ms	0,01	LQ	1	50		-	-	-	-	< <	-	-
LQ: limite de quantification analytique du laboratoire / <: 1	teneur inférieure	e à la LQ / -: i	oaramètre non	analysé									

LQ: limite de quantification analytique du laboratoire / <: teneur inférieure à la LQ / -: paramètre non analysé

⁽a) [Pour l'acceptation en ISDI], une valeur limite plus élevée peut être admise, à condition que la valeur limite de 500 mg/kg de matière sèche soit respectée pour le carbone organique total sur éluat, soit au pH du sol, soit pour un pH situé entre 7,5 et 8,0.
(b) Valeurs en gras : source = Teneurs totales en éléments traces métalliques dans les sols de la région NPDC, ISA/NPA 2002. En italique : source = ATSDR
(c) Si le déchet ne respecte pas au moins une des valeurs fixées pour le chlorure, le sulfate ou la fraction soluble, le déchet peut être encore jugé conforme aux critères d'admission [en ISDI] s'il respecte soit les valeurs associées au chlorure et au sulfate, soit celle associée à la fraction
(f) valeur non réglementaire mais parfois appliquée par les gestionnaires d'ISDI
concentration supérieure au bruit de fond et inférieure aux limites de catégorie A1
concentration supérieure aux valeurs limites de catégorie A1 et inférieure aux limites de catégorie B1

Tableau 6 : Résultats d'analyses sur les sols bruts (3/4)

						Projet	Log. Indiv.	Log. Indiv.	Log. Indiv.	Log. Indiv.	Log. Indiv.	Log. Indiv.	EV Coll.	Log. Indiv.
						Sondage	SC12.1	SC12.2	SC13.1	SC14.1	SC15.1	SC16.1	SC17.1	SC18.1
			Bruit de	Valeurs limite de	valeurs limites	Profondeur (m)	0,0-0,6 m	0,6-0,9 m	0,0-0,9 m	0,0-1,0 m	0,0-1,0 m	0,0-1,0 m	0,0-0,8 m	0,0-0,5 m
	Unités	LQ	fond (b)	catégorie A1 (ISDI)	de catégorie B1 (ISDND)	Lithologie	Remblais	Remblais	Remblais	Remblais	Remblais	Remblais	Limon	Remblais
					(ISDND)	Indices organoleptiques	-	-	-	-	-	-	-	- '
ANALYSES SUR SOL BRUT						organoicptiques								
Matière sèche	%	0,1	I -	-	_		95,5	88,8	88,4	91,6	93,5	93,2	80,8	88,9
COT	,0	0,1					55,5	55,5	33,1	01,0	00,0	00,2	50,5	55,5
COT Carbone Organique Total (a)	mg/kg Ms	0,4	-	30 000	-		122 000	-	-	-	-	200 000	-	-
Métaux et métalloïdes														
Antimoine (Sb) Arsenic (As)	mg/kg Ms	1	1,5 33				13,5	-	15	12,4	11,4	15,8	8,78	14,8
Baryum (Ba)	mg/kg Ms mg/kg Ms	1	3000				176	-	-	-	-	128	-	-
Cadmium (Cd)	mg/kg Ms	0,4	1,36		Tests de lixiviation		0,42	-	<	<	0,42	<	<	<
Chrome (Cr)	mg/kg Ms	5	78,1	Résultats de lixiviation conformes aux seuils	conformes à la		20,1	-	18,9	19,2	18,9	18,7	22,7	19,7
Cuivre (Cu)	mg/kg Ms	5	74	définis pour les	Décision du Conseil du 19/12/02 pour		40,5	-	98,6	69,5	73,3	65,4	12,1	78,5
Mercure (Hg) Molybdène (Mo)	mg/kg Ms mg/kg Ms	0,1	0,27	déchets inertes dans	les déchets non		0,37 1,58	-	<	<	<	< 1,48	<	<
Nickel (Ni)	mg/kg Ms	1	38,6	l'arrêté du 12/12/2014	dangereux		31,6	-	54,5	45,6	52,2	53,8	18,5	50,9
Plomb (Pb)	mg/kg Ms	5	198,1				55,4	-	54,6	32,7	37,3	43,4	16,6	42,7
Sélénium (Se)	mg/kg Ms	1	0,7				<	-	-	-	-	<	-	-
Zinc (Zn)	mg/kg Ms	5	205				192	-	108	94	100	118	57,4	102
Indice hydrocarbure C10-C40 Fraction C10-C16	mg/kg Ms	4	LQ	-	-		6,28	4,52	2,33	<	4,52	1,32	<	2,15
Fraction C16-C22	mg/kg Ms	4	LQ	-	-		17,3	4,15	2,07	<	5,89	3,39	<	4,18
Fraction C22-C30	mg/kg Ms	4	LQ	-	-		31,5	16,8	13,9	<	7,72	6,65	<	5,41
Fraction C30-C40	mg/kg Ms	4	LQ	-	-		19,1	14,7	8,33	<	4,08	16,2	<	5,63
Somme des hydrocarbures C10-C40	mg/kg Ms	15	LQ	500	5 000		74,1	40,2	26,6	<	22,2	27,5	<	17,4
HAP Naphtalène	mg/kg Ms	0,05	0,15		-		0,074	0,13	<	0,06	<	<	<	0,055
Acénaphtylène	mg/kg Ms	0,05	-	-	-		0,13	0,051	<	<	<	<	<	<
Acénaphtène	mg/kg Ms	0,05	-	-	-		<	0,15	<	<	<	<	<	<
Fluorène	mg/kg Ms	0,05	-	-	-		<	0,094	<	<	<	<	<	<
Phénanthrène	mg/kg Ms	0,05 0,05	-	-	-		0,33 0,14	1,1 0,1	0,16	0,19	0,24	0,084	<	0,17
Anthracène Fluoranthène	mg/kg Ms mg/kg Ms	0,05	-	-			0,14	0,1	< <	<	<	<	<	<
Pyrène	mg/kg Ms	0,05	-	-	-		0,36	0,67	<	0,059	0,061	<	<	0,062
Benzo(a)anthracène	mg/kg Ms	0,05	-	=	-		0,29	0,34	0,082	0,072	0,087	0,09	<	0,074
Chrysène	mg/kg Ms	0,05	-	-	-		0,49	0,43	0,089	0,14	0,1	0,092	<	0,16
Benzo(b)fluoranthène Benzo(k)fluoranthène	mg/kg Ms	0,05 0,05	-	-	-		0,68 0,22	0,29 0,064	<	0,066	<	0,066	<	0,082
Benzo(a)pyrène	mg/kg Ms mg/kg Ms	0,05	-	-	-		0,46	0,004	<	<	<	<	<	<
Dibenzo(a,h)anthracène	mg/kg Ms	0,05	-	-	-		0,2	<	<	<	<	<	<	<
Benzo(g,h,i)pérylène	mg/kg Ms	0,05	-	-	-		0,26	<	<	<	<	<	<	<
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,05	-	-	-		0,55	<	<	<	<	<	<	<
Somme des HAP BTEX	mg/kg Ms		25	50	500		4,6	3,9	0,33	0,59	0,49	0,33	<	0,6
Benzène	mg/kg Ms	0,05	LQ	-	-		<	<	<	<	<	<	<	<
Toluène	mg/kg Ms	0,05	LQ	-	-		<	<	<	<	0,05	<	<	<
Ethylbenzène	mg/kg Ms	0,05	LQ	-	-		<	<	<	<	<	<	<	<
m,p-Xylène	mg/kg Ms	0,05	LQ	-	-		<	<	<	<	0,23	<	<	<
o-Xylène Somme des BTEX	mg/kg Ms	0,05 0,05	LQ LQ	- 6	30		<	<	<	<	< 0,28	<	<	<
COHV	mg/kg Ms	0,05	LQ	6	30		<	<	<	<	0,28	<	<	<
Tetrachloroéthylène	mg/kg Ms	0,05	LQ	-	-		-	<	<	<	<	-	<	<
Trichloroéthylène	mg/kg Ms	0,05	LQ	-	-		-	<	<	<	<	-	<	<
cis 1,2-Dichloroéthylène	mg/kg Ms	0,1	LQ	-	-		-	<	<	<	<	-	<	<
Trans-1,2-dichloroéthylène 1,1-Dichloroéthylène	mg/kg Ms mg/kg Ms	0,1 0,1	LQ LQ	-	-		-	<	<	<	<	-	<	<
Dichlorométhane	mg/kg Ms	0,05	LQ	-	-			<	<	<	<	-	<	<
Chloroforme	mg/kg Ms	0,02	LQ	-	-		-	<	<	<	<	-	<	<
Tetrachlorométhane	mg/kg Ms	0,02	LQ	-	-		-	<	<	<	<	-	<	<
1,1-Dichloroéthane	mg/kg Ms	0,1	LQ	-	-		-	<	<	<	<	-	<	<
1,2-dichloroéthane 1,1,1-trichloroéthane	mg/kg Ms mg/kg Ms	0,05 0,1	LQ LQ	-	-		-	<	<	<	<	-	<	<
1,1,2-Trichloroéthane	mg/kg Ms	0,1	LQ		-		-	<	<	<	<	-	<	<
Chlorure de vinyle	mg/kg Ms	0,02	LQ	-	-		-	<	<	<	<	-	<	<
Bromochlorométhane	mg/kg Ms	0,2	LQ	-	-		-	<	<	<	<	-	<	<
Dibromométhane	mg/kg Ms	0,2	LQ	-	-		-	<	<	<	<	-	<	<
Bromodichlorométhane Dibromochlorométhane	mg/kg Ms mg/kg Ms	0,2 0,2	LQ LQ	-	-		-	< <	<	<	<	-	<	<
1,2-Dibromoéthane	mg/kg Ms	0,05	LQ	-	-			<	<	<	<	-	<	<
Bromoforme (tribromométhane)	mg/kg Ms	0,2	LQ	-	-		-	<	<	<	<	-	<	<
Somme des COHV	mg/kg Ms	-	LQ	2 (f)	10		-	-	-	-	-	-	-	-
PCB	4	2.0	1.0											
PCB (28) PCB (52)	mg/kg Ms mg/kg Ms	0,01 0,01	LQ LQ	-	-		<	-	-	-	-	<	-	-
PCB (101)	mg/kg Ms	0,01	LQ	-	-		<	-	-	-	-	<	-	-
PCB (118)	mg/kg Ms	0,01	LQ	-	-		<	-	-	-	-	<	-	-
PCB (138)	mg/kg Ms	0,01	LQ	-	-		<	-	-	-	-	<	-	-
POB (153)	mg/kg Ms	0,01	LQ	-	-		<	-	-	-	-	<	-	-
PCB (180)	mg/kg Ms	0,01	LQ LQ	-	50		<	-	-	-	-	<	-	-
Somme des PCB LQ: limite de quantification analytique du laboratoire / <; te	mg/kg Ms	- - à la I O /		analyaá	50		<	-		_		<	-	

LQ: limite de quantification analytique du laboratoire / <: teneur inférieure à la LQ / -: paramètre non analysé

⁽a) [Pour l'acceptation en ISDI], une valeur limite plus élevée peut être admise, à condition que la valeur limite de 500 mg/kg de matière sèche soit respectée pour le carbone organique total sur éluat, soit au pH du soi, soit pour un pH situé entre 7,5 et 8,0.

(b) Valeurs en gras : source = Teneurs totales en éléments traces métalliques dans les sols de la région NPDC, ISA/NPA 2002. En italique : source = ATSDR

(c) Si le déchet ne respecte pas au moins une des valeurs fixées pour le chlorure, le sulfate ou la fraction soluble, le déchet peut être encore jugé conforme aux critères d'admission [en ISDI] sil respecte soit les valeurs associées au chlorure et au sulfate, soit celle associée à la fraction

(f) valeur non réglementaire mais parfois appliquée par les gestionnaires d'ISDI concentration supérieure au bruit de fond et inférieure aux limites de catégorie A1 et inférieure aux limites de catégorie B1

Tableau 7 : Résultats d'analyses sur les sols bruts (4/4)

						Projet	Log. Indiv.	Log. Indiv.	Log. Indiv.	EV Coll.	Log. Indiv.	Log. Indiv.	Voirie	Log. Indiv.
						Sondage	SC18.2	SC19.1	SC20.1	SC21.1	SC22.1	SC22.2	SC23.1	SC24.1
			Bruit de	Valeurs limite de	valeurs limites	Profondeur (m)	0,5-2,0 m	0,0-1,0 m	0,0-1,0 m	0,0-1,0 m	0,0-0,9 m	1,2-2,0 m	0,0-0,5 m	0,0-1,0 m
	Unités	LQ	fond (b)	catégorie A1 (ISDI)	de catégorie B1 (ISDND)	Lithologie	Limon	Remblais	Remblais	Limon	Remblais	Remblais	Remblais	Remblais
					(ISDIND)	Indices organoleptiques	-	-	-	-	-	-	-	-
ANALYSES SUR SOL BRUT		<u> </u>	<u> </u>			oi ganoie priques								
Matière sèche	%	0,1	ı				83,9	89,8	89,3	89,2	96,2	86	91,1	91
COT	%	0,1	-	-	-		63,9	69,6	69,3	09,2	96,2	00	91,1	91
COT Carbone Organique Total (a)	mg/kg Ms	0,4	-	30 000	-		-	-	21 000	7 980	92 600	-	28 700	142 000
Métaux et métalloïdes								-						
Antimoine (Sb)	mg/kg Ms	1	1,5				-	-	<	<	<	-	8,35	<
Arsenic (As)	mg/kg Ms	1	33				-	16,4	11,9	5,54	10,9	-	11,4	14,3
Baryum (Ba) Cadmium (Cd)	mg/kg Ms	0,4	3000 1,36				-	0,44	90,1	56,5 <	131	-	126	118
Chrome (Cr)	mg/kg Ms mg/kg Ms	5	78,1	Résultats de lixiviation	Tests de lixiviation conformes à la		-	21,2	27,4	20,6	15,2	-	23,3	22,5
Quivre (Qu)	mg/kg Ms	5	74	conformes aux seuils	Décision du Conseil		-	67,2	48,2	6,98	42,9	-	22,4	63,4
Mercure (Hg)	mg/kg Ms	0,1	0,27	définis pour les déchets inertes dans	du 19/12/02 pour		-	0,25	<	<	0,11	-	<	<
Molybdène (Mo)	mg/kg Ms	1		l'arrêté du 12/12/2014	les déchets non dangereux		-	-	<	<	1,06	-	<	1,28
Nickel (Ni)	mg/kg Ms	1	38,6		darigeredx		-	43	20	15,1	29	-	21,6	49,8
Plomb (Pb)	mg/kg Ms	5	198,1				-	47,6	33,3	10,5	28,7	-	45,2	39,8
Sélénium (Se) Zinc (Zn)	mg/kg Ms mg/kg Ms	1 5	0,7 205				-	89,8	385	< 34,4	< 309	-	< 192	119
Indice hydrocarbure C10-C40		,	_,,					55,5		2.,,				
Fraction C10-C16	mg/kg Ms	4	LQ	-			-	10,4	5,74	<	<	-	3,89	7,02
Fraction C16-C22	mg/kg Ms	4	LQ	-	-		-	23,4	9,78	<	<	-	4,07	5,39
Fraction C22-C30	mg/kg Ms	4	LQ	-	-		-	28,1	14,2	<	<	-	8,99	7,47
Fraction C30-C40 Somme des hydrocarbures C10-C40	mg/kg Ms	4 15	LQ LQ	500	5 000		-	12 73,9	20,4 50,2	<	<	-	19,4 36,3	4,99 24,9
HAP	mg/kg Ms	10	LQ	300	3 000		-	13,3	50,2	_	`		30,3	24,3
Naphtalène	mg/kg Ms	0,05	0,15	-	-		-	0,11	<	<	<	-	<	<
Acénaphtylène	mg/kg Ms	0,05	-	-	-		-	<	<	<	<	-	<	<
Acénaphtène	mg/kg Ms	0,05	-	-	-		-	<	<	<	<	-	<	<
Fluorène	mg/kg Ms	0,05	-	-	-		-	< 0.40	<	<	<	-	<	< 0.10
Phénanthrène Anthracène	mg/kg Ms mg/kg Ms	0,05 0,05	-	-	-		-	0,48 0,1	<	<	0,26 0,059	-	0,25 0,081	0,13 <0.05
Fluoranthène	mg/kg Ms	0,05	-	-	<u> </u>		-	0,35	<	<	0,35	-	0,46	0,14
Pyrène	mg/kg Ms	0,05	-	-	-		-	0,34	<	<	0,29	-	0,41	0,12
Benzo(a)anthracène	mg/kg Ms	0,05	-	-	-		-	0,3	<	<	0,14	-	0,2	0,1
Chrysène	mg/kg Ms	0,05	-	-	-		-	0,26	<	<	0,19	-	0,27	0,14
Benzo(b)fluoranthène	mg/kg Ms	0,05	-	-	-		-	0,42	<	<	0,25	-	0,56	0,17
Benzo(k)fluoranthène	mg/kg Ms	0,05 0,05	-	-	-		-	0,13 0,19	<	<	0,089 0,14	-	0,17 0,29	0,063 0,085
Benzo(a)pyrène Dibenzo(a,h)anthracène	mg/kg Ms mg/kg Ms	0,05	-	-			-	0,19	<	<	0,053	-	0,12	0,065
Benzo(g,h,i)pérylène	mg/kg Ms	0,05	-	-	-		-	0,11	<	<	0,073	-	0,16	<
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,05	-	-	-		-	0,15	<	<	0,084	-	0,23	<
Somme des HAP	mg/kg Ms		25	50	500		-	2,9	<	<	2	-	3,2	0,95
BTEX			10											
Benzène Toluène	mg/kg Ms mg/kg Ms	0,05 0,05	LQ LQ	-	-		-	<	<	<	<	-	<	<
Ethylbenzène	mg/kg Ms	0,05	LQ	-	-		-	<	<	<	<	-	<	<
m,p-Xylène	mg/kg Ms	0,05	LQ	-	-		-	<	<	<	<	-	<	<
o-Xylène	mg/kg Ms	0,05	LQ	=	=		-	<	<	<	<	-	<	<
Somme des BTEX	mg/kg Ms	0,05	LQ	6	30		-	<	<	<	<	-	<	<
Autres Paramètres	0 M-	0.5	LQ											
Indice phénol Oyanures totaux	mg/kg Ms mg/kg Ms	0,5 0,5	LQ	-	-		<	-	-	-	-	<	-	-
COHV	riig/kg ivis	0,5										`		
Tetrachloroéthylène	mg/kg Ms	0,05	LQ	-	-		-	<	-	-	-	-	-	-
Trichloroéthylène	mg/kg Ms	0,05	LQ	-	-		-	<	-	-	-	-	-	-
cis 1,2-Dichloroéthylène	mg/kg Ms	0,1	LQ	-	-		-	<	-	-	-	-	-	-
Trans-1,2-dichloroéthylène 1,1-Dichloroéthylène	mg/kg Ms mg/kg Ms	0,1 0,1	LQ LQ	-	-		-	< <	-	-	-	-	-	-
Dichlorométhane	mg/kg Ms	0,1	LQ				-	<	-	-	-	-	-	-
Chloroforme	mg/kg Ms	0,02	LQ	-	-		-	<	-	-	-	-	-	-
Tetrachlorométhane	mg/kg Ms	0,02	LQ	-	-		-	<	-	-	-	-	-	-
1,1-Dichloroéthane	mg/kg Ms	0,1	LQ	-	-		-	<	-	-	-	-	-	-
1,2-dichloroéthane	mg/kg Ms	0,05	LQ LQ	-	-		-	<	-	-	-	-	-	-
1,1,1-trichloroéthane 1,1,2-Trichloroéthane	mg/kg Ms mg/kg Ms	0,1 0,2	LQ	-	-		-	< <	-	-	-	-	-	-
Chlorure de vinyle	mg/kg Ms	0,02	LQ	-	-		-	<	-	-	-	-	-	-
Bromochlorométhane	mg/kg Ms	0,2	LQ	-	-		-	<	-	-	-	-	-	-
Dibromométhane	mg/kg Ms	0,2	LQ	-	-		-	<	-	-	-	-	-	-
Bromodichlorométhane	mg/kg Ms	0,2	LQ	-	-		-	<	-	-	-	-	-	-
Dibromochlorométhane	mg/kg Ms	0,2	LQ	-	-		-	<	-	-	-	-	-	-
1,2-Dibromoéthane	mg/kg Ms	0,05	LQ LQ	-	-		-	<	-	-	-	-	-	-
Bromoforme (tribromométhane) Somme des COHV	mg/kg Ms mg/kg Ms	0,2	LQ	2 (f)	10		-	-	-	-	-	-	-	-
PCB	g/kg IVIS			£ (1)	10									
PCB (28)	mg/kg Ms	0,01	LQ	-	-		-	-	<	<	<	-	<	<
PCB (52)	mg/kg Ms	0,01	LQ	-	-		-	-	<	<	<	-	<	<
PCB (101)	mg/kg Ms	0,01	LQ	-	-		-	-	<	<	<	-	0,01	<
PCB (118)	mg/kg Ms	0,01	LQ LQ	-	-		-	-	< 0.01	<	<	-	< 0.04	<
PCB (138) PCB (153)	mg/kg Ms mg/kg Ms	0,01 0,01	LQ LQ		-		-	-	0,01	<	<	-	0,04 0,03	< <
PCB (180)	mg/kg Ms	0,01	LQ		-		-	-	0,01	<	<	-	0,02	<
Somme des PCB	mg/kg Ms		LQ	1	50		-	-	0,03	<	<	-	0,1	<
LO: limite de quantification analytique du laboratoire / «		ب / ۱۵ اما ه	naramàtra nan	analysá										

LQ: limite de quantification analytique du laboratoire / <: teneur inférieure à la LQ / -: paramètre non analysé

⁽a) [Pour l'acceptation en ISDI], une valeur limite plus élevée peut être admise, à condition que la valeur limite de 500 mg/kg de matière sèche soit respectée pour le carbone organique total sur éluat, soit au pH du sol, soit pour un pH situé entre 7,5 et 8,0.
(b) Valeurs en gras : source = Teneurs totales en éléments traces métalliques dans les sols de la région NPDC, ISA/INPA 2002. En italique : source = ATSDR
(c) Si le déchet ne respecte pas au moins une des valeurs fixées pour le chlorure, le sulfate ou la fraction soluble, le déchet peut être encore jugé conforme aux critères d'admission [en ISDI] s'il respecte soit les valeurs associées au chlorure et au sulfate, soit celle associée à la fraction

Tableau 8 : Résultats d'analyses sur éluat

					Í												
						Projet	Log. Coll.	Log. Coll.	Log. Coll.	Log. Indiv.	Log. Indiv.	Log. Indiv.	Log. Indiv.	EV Coll.	Log. Indiv.	Voirie	Log. Indiv.
			Bruit de fond (b)	Valeurs limite de catégorie A1 (ISDI)	do catágorio R1	Sondage	SC1.1	SC2.1	SC6.1	SC11.1	SC12.1	SC16.1	SC20.1	SC21.1	SC22.1	SC23.1	SC24.1
						Profondeur (m)	0,0-1,0 m	0,0-1,0 m	0,0-1,0 m	0,0-0,5 m	0,0-0,6 m	0,0-1,0 m	0,0-1,0 m	0,0-1,0 m	0,0-0,9 m	0,0-0,5 m	0,0-1,0 m
	Unités	LQ				Lithologie	Remblais	Remblais	Remblais	Remblais	Remblais	Remblais	Remblais	Limon	Remblais	Remblais	Remblais
			iolia (b)			Indices organoleptiques	-	-	-	-	-	-	-	-	-	-	-
ANALYSES SUR ELUAT																	
Paramètres généraux																	ĺ
рН	-	-	-	-	-		8,4	9	7,9	7,7	8,1	8,5	9,7	8,1	8,3	7,1	8,5
Conductivité corrigée à 25 ℃	μS/cm	-	-	-	-		85	136	109	78	185	120	2280	84	74	131	579
Fraction soluble (c)	mg/kg M.S.	2000	-	4000	60000		<	<	<	<	<	<	25200	7580	<	2440	4400
Carbone organique total	mg/kg M.S.	50	-	500	800		<	<	66	<	<	<	<	<	<	120	<
Indice phénol	mg/kg M.S.	0,5	-	1	-		<	<	<	<	<	<	<	<	<	<	<
Anions																	
Fluorures	mg/kg M.S.	5	-	10	150		5,31	11,2	<	8,81	8,76	10,4	<	11,1	5,13	13,4	8,28
Chlorures (***)	mg/kg M.S.	10	-	800	15000		14,4	17,5	15,5	<	39	14,2	22,6	49	12,9	13,7	<
Sulfates (***)	mg/kg M.S.	50	-	1000	20000		84,8	301	166	<51.7	463	119	14300	272	61,3	123	2560
Métaux et métalloïdes											-	-	-		-		
Antimoine	mg/kg M.S.	0,005	-	0,06	0,7		0,011	0,014	0,01	0,005	0,01	0,005	0,009	<	0,007	0,15	0,007
Arsenic	mg/kg M.S.	0,2	-	0,5	2		<	<	<	<	<	<	<	<	<	<	<
Baryum	mg/kg M.S.	0,1	-	20	100		0,28	0,11	0,2	0,26	0,14	<	0,38	0,63	0,2	0,59	0,2
Cadmium	mg/kg M.S.	0,002	-	0,04	1		<	<	<	<	<	<	0,006	<	<	<	<
Chrome	mg/kg M.S.	0,1	-	0,5	10		<	<	<	<	<	<	<	<	<	0,12	<
Cuivre	mg/kg M.S.	0,2	-	2	50		<	<	<	<	<	<	0,39	<	<	<	<
Mercure	mg/kg M.S.	0,001	-	0,01	0,2		<	<	<	<	<	<	<	<	<	<	<
Molybdène	mg/kg M.S.	0,01	-	0,5	10		0,034	0,021	0,016	0,019	0,033	0,031	0,029	0,04	0,019	0,09	0,027
Nickel	mg/kg M.S.	0,1	-	0,4	10		<	<	<	<	<	<	<	0,14	<	<	<
Plomb	mg/kg M.S.	0,1	-	0,5	10		0,2	<	<	<	<	<	0,14	<	<	0,17	<
Zinc	mg/kg M.S.	0,2	-	4	50		<	<	<	<	<	<	<	0,21	0,35	0,52	<
Selenium	mg/kg M.S.	0,01	-	0,1	0,5		<	0,013	<	<	<	0,012	<	<	<	0,017	0,013

LQ: limite de quantification analytique du laboratoire / <: teneur inférieure à la LQ / -: paramètre non analysé

(f) valeur non réglementaire mais parfois appliquée par les gestionnaires d'ISDI concentration supérieure au bruit de fond et inférieure aux limites de catégorie A1 concentration supérieure aux valeurs limites de catégorie A1 et inférieure aux limites de catégorie B1

⁽a) [Pour l'acceptation en ISDI], une valeur limite plus élevée peut être admise, à condition que la valeur limite de 500 mg/kg de matière sèche soit respectée pour le carbone organique total sur éluat, soit au pH du sol, soit pour un pH situé entre 7,5 et 8,0.

(b) Valeurs en gras: source = Teneurs totales en éléments traces métalliques dans les sols de la région NPDC, ISA/INRA 2002. En italique: source = ATSDR

(c) Si le déchet ne respecte pas au moins une des valeurs fixées pour le chlorure, le sulfate ou la fraction soluble, le déchet peut être encore jugé conforme aux critères d'admission [en ISDI] s'il respecte soit les valeurs associées au chlorure et au sulfate, soit celle associée à la fraction

Approche sanitaire

Les résultats des analyses sur les sols indiquent :

 un bruit de fond en métaux généralisé à l'échelle du site dès la surface, marqué essentiellement par des dépassements des gammes de valeurs régionales en cuivre, nickel, zinc, et plus ponctuellement en mercure, antimoine, cadmium et sélénium.

On notera que les teneurs mesurées sont globalement du même ordre de grandeur que les concentrations régionales, à l'exception de teneurs notables dans les remblais :

- en antimoine (8,35 mg/kg MS) au droit de SC23 (future voirie);
- en mercure (2,41 mg/kg MS) au droit de SC11 (futurs logements individuels). Un risque de volatilité est associé à cette teneur ;
- en zinc (811 mg/kg MS) au droit de SC10 (futurs logements collectifs);
- un bruit de fond en HAP avec des teneurs globalement comprises dans la gamme de concentrations présentes dans les sols naturels, ainsi qu'en hydrocarbures C₁₀-C₄₀.

On note cependant pour ces paramètres, en bordure est du site (secteur des sondages ST28, SC8, 10 et 11) :

- au droit de SC10, une anomalie de concentration en hydrocarbures C₁₀-C₄₀ (692 mg/kg MS) dans les remblais superficiels du premier mètre, associée à une anomalie de concentration en HAP caractérisée notamment par un dépassement de la valeur de bruit de fond en naphtalène (composé HAP volatil).
 - Cette anomalie est délimitée au nord par le sondage SC6, ainsi que SC8 pour les hydrocarbures C_{10} - C_{40} . Elle n'est pas délimitée en profondeur et est à mettre en lien avec les anomalies identifiées en ST28 en 2014 sur les hydrocarbures C_{10} - C_{40} et le naphtalène ;
- une anomalie de concentration en hydrocarbures C₁₀-C₄₀ en SC11, entre 0,5 et 1 m de profondeur, également associée à une anomalie de concentration en naphtalène. Cette anomalie est délimitée par les sondages SC12 à SC14 à l'ouest et au sud ;
- un dépassement de la valeur de bruit de fond en naphtalène au droit de SC8 (0,31 mg/kg MS);
- des traces en BTEX sont identifiées dans les remblais superficiels des sondages SC1, SC6, SC11 et SC15, ainsi qu'en PCB au droit des sondages SC20 et SC23;
- une trace en 4-Méthylphénol est identifiée dans les remblais du sondage SC8, non révélatrice d'un impact des sols.

La cartographie des principales anomalies est présentée en **Figure 7** en page suivante (pour plus de lisibilité, les teneurs en hydrocarbures C_{10} - C_{40} inférieures à 100 mg/kg MS ne sont pas figurées).

Remarque : suite aux difficultés d'accès à l'ensemble du site, nous ne disposons d'aucune donnée sur la qualité des sols au droit des groupements de futurs logements actuellement situés dans les zones densément végétalisées en bordure ouest du site.

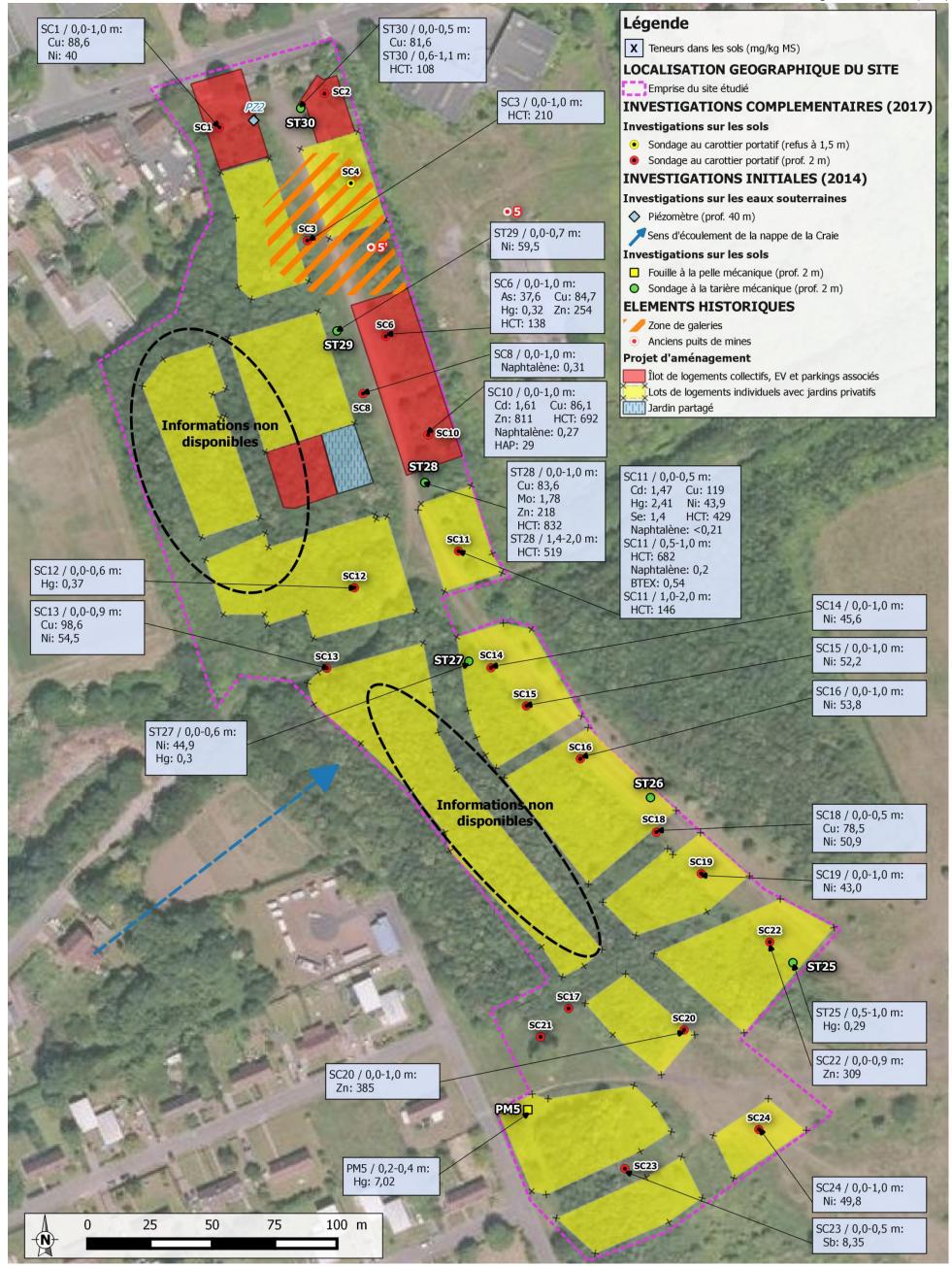


Figure 7 : Cartographie de synthèse des anomalies dans les sols

Approche déblais

Les analyses réalisées selon les paramètres de l'arrêté ministériel du 12/12/2014 mettent en évidence :

- <u>sur sol brut</u>: un dépassement de la valeur de référence ISDI en hydrocarbures C₁₀-C₄₀ pour les échantillons SC10.1 (0,0-1,0 m) et SC11.2 (0,5-1,0 m). Ces anomalies ne sont pas délimitées à ce stade :
- sur éluats : des dépassements des valeurs seuil ISDI :
 - en fraction soluble pour les échantillons SC20.1, SC21.1 et SC24.1 ;
 - en fluorures pour les échantillons SC2.1, SC16.1, SC21.1 et SC23.1;
 - en sulfates pour les échantillons SC20.1 et SC24.1 ;
 - ponctuellement en antimoine sur l'échantillon SC23.1.

Compte-tenu de ces éléments, en vue des décaissements réalisés dans le cadre de l'aménagement du site (création des fondations), les filières d'évacuation envisageables pour ces matériaux sont présentées dans le **Tableau 9** ci-dessous.

A l'exception des déblais associés aux échantillons SC10.1 et SC11.2 et en l'absence de pollution concentrée sur les sols bruts, une réutilisation des terres sur site est envisageable sous recouvrement pour les déblais catégorisés.

Tableau 9 : Caractérisation des déblais en cas de gestion hors site selon les paramètres de l'arrêté du 12/12/2014

Sondage	Horizon	Echantillon	Filière⁵	Paramètres discriminants (en mg/kg MS)
SC1	0,0-1,0 m	SC1.1	ISDI	-
SC2	0,0-1,0 m	SC2.1	ISDI+	Eluat / Fluorures : 11,2
SC6	0,0-1,0 m	SC6.1	ISDI	-
SC10	0,0-1,0 m	SC10.1	ISDND / Biotraitement	Sols bruts / Hydrocarbures C ₁₀ -C ₄₀ : 692
	0,0-0,5 m	SC11.1	ISDI	-
SC11	0,5-1,0 m	SC11.2	ISDND / Biotraitement	Sols bruts / Hydrocarbures C ₁₀ -C ₄₀ : 682
SC12	0,0-0,6 m	SC12.1	ISDI	-
SC16	0,0-1,0 m	SC16.1	ISDI+	Eluat / Fluorures : 10,4
SC20	0,0-1,0 m	SC20.1	ISDND	Eluat / Fraction soluble : 25 200 ; Sulfates : 14 300
SC21	0,0-1,0 m	SC21.1	ISDI+	Eluat / Fraction soluble : 7 580 ; Fluorures : 11,1
SC22	0,0-0,9 m	SC22.1	ISDI	-
SC23	0,0-0,5 m	SC23.1	ISDI+	Eluat/ Fluorures : 13,4 ; Antimoine : 0,15
SC24	0,0-1,0 m	SC24.1	ISDI+	Eluat / Fraction soluble : 4 400 ; Sulfates : 2 560

En vue des terrassements, des analyses complémentaires selon les paramètres de l'arrêté du 12/12/2014 pourront être réalisées afin de disposer d'un maillage précis des terres inertes/non inertes.

ISDI+: Installation de Stockage de Déchets Inertes acceptant les matériaux présentant des teneurs sur éluat (uniquement) jusqu'à 3 fois supérieures aux valeurs seuils ISDI pour 3 paramètres maximum

Bio-traitement : centre pratiquant un traitement biologique sur les terres notamment impactées par les hydrocarbures

ISDND : Installation de Stockage de Déchets Non Dangereux

Réf: CSSPNO172503 / RSSPNO07255-01

⁵ ISDI : Installation de Stockage de Déchets Inertes

6. Schéma conceptuel à l'issue du diagnostic

Projet d'aménagement

Le projet d'aménagement prévoit la construction de 4 bâtiments de logements collectifs associés à des voiries, espaces verts collectifs et jardins partagés, ainsi que 79 logements individuels avec jardins privatifs.

Géologie et hydrogéologie

La géologie de la zone d'étude est la suivante, sur la base des observations réalisées au cours des investigations : sous couvert végétal, remblais de schistes sur limon puis craie.

La nappe de la Craie est rencontrée vers 30 à 35 m de profondeur et s'écoule localement du sud-ouest vers le nord-est.

Sources de pollution

Les investigations et analyses sur les sols indiquent :

- des zones avec anomalies de concentration en hydrocarbures et naphtalène au droit des sondages ST28, SC8, SC10 et SC11;
- un bruit de fond généralisé en métaux, HAP et hydrocarbures C₁₀-C₄₀, y compris dans les terrains situés en surface.

Enjeux à considérer

Les enjeux à considérer sur site sont les futurs habitants du complexe immobilier (adultes et enfants).

Hors-site, les enjeux à considérer sont les habitants des logements situés à proximité de la zone d'étude.

Voies de transferts depuis les milieux impactés vers les milieux d'exposition

Au droit des zones recouvertes par des bâtiments ou un revêtement spécifique, la voie de transfert à considérer est la volatilisation des composés volatils.

Au droit des espaces non recouverts, les voies de transfert à considérer sont la volatilisation des composés volatils, l'envol de poussières contenant des polluants, l'emport de polluants par les eaux de ruissellement, ainsi que le transfert vers les végétaux cultivés. La perméation des composés vers les canalisations d'eau potable est également possible.

Hors-site, la voie de transfert à considérer est l'envol de poussières contenant des polluants depuis le site.

Voies d'expositions

Au droit des zones recouvertes, la seule voie d'exposition à considérer est l'inhalation de composés volatils issus du milieu souterrain (zone non saturée). Au droit des zones non recouvertes, les voies d'exposition à considérer sont :

- l'inhalation de composés volatils issus du milieu souterrain (zone non saturée) ;
- · l'inhalation de poussières ;
- l'ingestion de sols et poussières contenant des polluants ;
- l'ingestion de végétaux cultivés sur site.

Enfin, les usagers peuvent être exposés par usage des eaux ayant transité dans les canalisations implantées dans les sols pollués.

Hors-site, les habitants du secteur étudié peuvent être exposés par ingestion/inhalation de poussières contaminées.

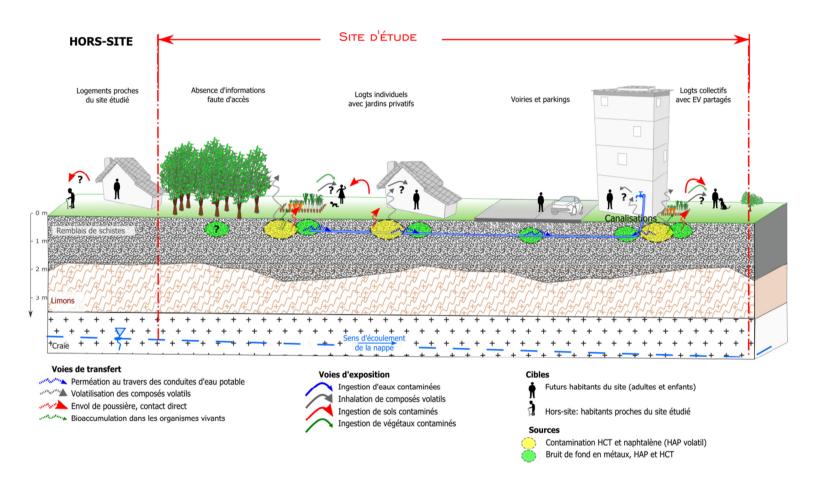


Figure 8 : Schéma conceptuel (usage futur)

7. Synthèse et recommandations

7.1 Synthèse

La société CM-CIC IMMOBILIER projette l'aménagement d'un ensemble immobilier de 5 ha sur un site localisé rue Jules Supervielle, à LOOS-EN-GOHELLE (62). Le projet envisagé comprend la construction de maisons individuelles avec jardins privatifs et d'immeubles de logements collectifs, associés à des voiries et espaces verts.

Les parcelles concernées sont situées au droit du carreau d'une ancienne fosse minière (fosses n°5 et 5bis de Béthune) et ont accueilli des installations potentiellement polluantes en lien avec cette activité historique. Un premier diagnostic réalisé en 2014 a permis de mettre en évidence la présence dans les sols de teneurs en métaux et d'un impact en hydrocarbures.

En parallèle, une étude géotechnique préalable réalisée en 2014 avait permis de retenir en première approche certaines dispositions constructives. Ces études ont essentiellement concerné la partie est de l'emprise du projet d'aménagement envisagé.

Dans le cadre de ce projet, CM-CIC IMMOBILIER consulte le groupe GINGER pour compléter les études précédentes et l'accompagner dans la réalisation d'un diagnostic complémentaire de la qualité environnementale des sols.

Les investigations et analyses réalisées en novembre 2017 indiquent :

- d'un point de vue sanitaire :
 - la présence d'hydrocarbures et de naphtalène (HAP volatil) au droit de futurs logements individuels (SC11), voiries (SC8, ST28) et logements collectifs (SC10);
 - un bruit de fond généralisé en métaux, HAP et hydrocarbures C₁₀-C₄₀;
- d'un point de vue gestion de déblais: d'après les analyses réalisées selon les paramètres de l'arrêté du 12/12/2014, les matériaux de surface des secteurs SC1, SC6, SC12 et SC22 sont considérés comme inertes. Ils peuvent être orientés hors-site vers une installation de stockage de déchets inertes.

En raison de la densité de végétation empêchant l'accès à certaines zones du site, aucune donnée de qualité environnementale n'est disponible pour deux secteurs situés en bordure ouest du projet d'aménagement.

7.2 Recommandations

Compte-tenu de ces éléments, nous recommandons :

- la réalisation d'investigations complémentaires :
 - sur les sols au droit des deux secteurs non caractérisés (défrichage nécessaire) en bordure ouest du site;
 - autour des zones impactées par les hydrocarbures et le naphtalène afin de préciser leur extension ;
 - sur les gaz du sol au droit des zones impactées par le mercure (ST11 et PM5 : futurs logements individuels), potentiellement volatil à de telles concentrations ;
 - en vue des terrassements, des analyses complémentaires selon les paramètres de l'arrêté du 12/12/2014 pourront être réalisées afin de disposer d'un maillage précis des terres inertes/non inertes;
- l'apport de terres végétales saines de recouvrement sur 50 cm d'épaisseur au droit de la zone de jardin partagé et des jardins privatifs ;
- l'apport de terres saines de recouvrement sur 30 cm d'épaisseur au droit des espaces verts.

A l'issue des investigations complémentaires et de délimitation, la réalisation d'un plan de gestion, permettant de déterminer les éventuelles mesures de gestion à mettre en place au droit du site dans le cadre de son réaménagement, couplé à une analyse des risques sanitaires permettant de vérifier la compatibilité du site avec l'usage envisagé.

Ce document devra également présenter un plan de terrassement en adéquation avec le projet d'aménagement immobilier (nature et profondeur des décaissements).

Nous préconisons également de garder en mémoire les études relatives à la qualité environnementale des sols au droit du site par une identification pérenne du présent rapport dans les documents d'urbanisme et fonciers.

Notons que BURGEAP ne pourra être tenu responsable si des terres excavées issues du site ne sont pas évacuées vers des exutoires dument habilités à les prendre en charge.



8. Limites d'utilisation d'une étude de pollution

- 1- Une étude de la pollution du milieu souterrain a pour seule fonction de renseigner sur la qualité des sols, des eaux ou des déchets contenus dans le milieu souterrain. Toute utilisation en dehors de ce contexte, dans un but géotechnique par exemple, ne saurait engager la responsabilité de notre société.
- 2- Il est précisé que le diagnostic repose sur une reconnaissance du sous-sol réalisée au moyen de sondages répartis sur le site, soit selon un maillage régulier, soit de façon orientée en fonction des informations historiques ou bien encore en fonction de la localisation des installations qui ont été indiquées par l'exploitant comme pouvant être à l'origine d'une pollution. Ce dispositif ne permet pas de lever la totalité des aléas, dont l'extension possible est en relation inverse de la densité du maillage de sondages, et qui sont liés à des hétérogénéités toujours possibles en milieu naturel ou artificiel. Par ailleurs, l'inaccessibilité de certaines zones peut entraîner un défaut d'observation non imputable à notre société.
- 3- Le diagnostic rend compte d'un état du milieu à un instant donné. Des évènements ultérieurs au diagnostic (interventions humaines, traitement des terres pour améliorer leurs caractéristiques mécaniques, ou phénomènes naturels) peuvent modifier la situation observée à cet instant.
- 4- La responsabilité de BURGEAP ne pourra être engagée si les informations qui lui ont été communiquées sont incomplètes et/ou erronées et en cas d'omission, de défaillance et/ou erreur dans les informations communiquées.

ANNEXES

Annexe 1. Fiches BASIAS NPC6200408 et NPC6200318

Cette annexe contient 6 pages.

NPC6200318

Fiche Détaillée

Pour connaître le cadre réglementaire et la méthodologie de l'inventaire historique régional, consultez le <u>préambule départemental</u>.

1 - Identification du site

Unité gestionnaire : NPC Créateur(s) de la fiche : H/C

Date de création de la fiche : (*) 11/09/1997 Nom(s) usuel(s) : Terril 59

Raison(s) sociale(s) de l'entreprise :

Raison sociale	Date connue (*)
Schistes calibres de Gohelles, anc. CDF	

Etat de connaissance : Inventorié

Sous surveillance:

Visite du site : Oui, site localisé Date de la visite : (*) 12/03/2004

Autre(s) identification(s):

Numéro	Organisme ou BD associée
070.00283	GIDIC

2 - Consultation à propos du site

Consultation mairie: Oui

Date consultation mairie: (*) 07/01/2005

Réponse mairie : Non

3 - Localisation du site

Adresse (ancien format) : Beugnet (rue B.)
Dernière adresse : Rue Beugnet (B)

Localisation: Rue du Niger et rue Charles Beugnet

Code INSEE: 62528

Commune principale: LOOS-EN-GOHELLE (62528)

Zone Lambert initiale : Lambert I Précision centroïde Décamètre

Projection	L.zone (centroïde)	L2e (centroïde)	L93 (centroïde)	L2e (adresse)
X (m)	630320	630378	683165	
Y (m)	305397	2605851	7038837	
Préc.XY	Décamètre			

Carte géologique:

Carte	Numéro carte	Huitième		
BETHUNE	19	7		

Carte(s) et plan(s)	Carte	Echelle	Année	Présence du	Référence
	1	1	l l	1	

consulté((\mathbf{s})):
	\sim ,	

consultée		édition	site	dossier
Carte IGN	1/20000	1968	Oui	

4 - Propriété du site

Nombre de propriétaires actuels : ?

5 - Activités du site

Etat d'occupation du site : Activité terminée

Date de première activité : (*) 01/01/1111

Historique des activités sur le site :

N°	Libellé	Code	Date	Date	IImnantanaa	groupe	Date du	Ref.	Autres
ordre	activité	activité	début (*)	fin (*)		SEI	début	dossier	infos
1	Terrils et/ ou crassier de mines	V89.04Z	01/01/1111		?	groupe	? =Origine de la date non connue		

Exploitant(s) du site:

Nom de l'exploitant ou raison sociale	Date de début d'exploitation (*)	Date de fin d'exploitation (*)
HBNPC (5 de Béthune)	01/01/1111	

Terril 59: Terril conique, noir et rouge. Commentaire(s):

6 - Utilisations et projets

Nombre d'utilisateur(s) actuel(s) : ?

Site en friche: Oui Site réaménagé: Non Réaménagement sensible : Non

8 - Environnement

Milieu Urbain

d'implantation:

Captage AEP: Non

00197x0039 Référence BSS:

Distance captage 1250.0

AEP:

Position AEP: En amont Périmètre de

Non

protection:

Formation Limons/Loess

superficielle:

Substratum: Calcaire tendre/Craie Type de nappe: Libre

Nom de la nappe : Craie du sénonien

Type d'aquifère : Fissuré Code du système 001h

aquifère:

Nom du système ARTOIS/GOHELLE EST

aquifère:

Commentaire(s): Référence BSS: 00198X0048, Distance 3000 m, Position amont, Périmètre de protection

immédiat (10 m) (rapproché 40 à 100 m).

9 - Etudes et actions

10 - Document(s) associé(s)

11 - Bibliographie

Source d'information : Inventaire des Terrils 1969/1972

12 - Synthèse historique

13 - Etudes et actions Basol

- (*) La convention retenue pour l'enregistrement des dates dans la banque de données BASIAS est la suivante .
- si la date n'est pas connue, le champ est saisi ainsi : 01/01/1111, ou sans date indiquée.
- si les dates ne sont pas connues mais qu'une chronologie relative a pu être établie dans une succession d'activités, d'exploitants, de propriétaires, ...etc., les champs "date" sont successivement :
 - \bullet 01/01/1111,
 - \bullet 01/01/1112,
 - 01/01/1113,
 - - ou sans date indiquée,
- si l'année seule est connue, le champ date est : 01/01/année précise,
- si la date est connue précisément, elle est notée : jour/mois/année.

NPC6200408

Fiche Détaillée

Pour connaître le cadre réglementaire et la méthodologie de l'inventaire historique régional, consultez le <u>préambule départemental</u>.

1 - Identification du site

Unité gestionnaire : NPC Créateur(s) de la fiche : CG

Date de création de la fiche : (*) 23/07/1999

Nom(s) usuel(s): Carreau et terril du 5

Raison(s) sociale(s) de l'entreprise :

Raison sociale

Connue
(*)

HBNPC

Etat de connaissance : Inventorié

Sous surveillance:

Visite du site : Oui, site localisé
Date de la visite : (*) 08/03/2004

Autre(s) identification(s):

Numéro Organisme ou BD associée
00197x9009 EPF

2 - Consultation à propos du site

Consultation mairie: Oui

Date consultation mairie: (*) 07/01/2005

Réponse mairie : Non

3 - Localisation du site

Adresse (ancien format) Supervielle (rue)

:

Dernière adresse : Rue Supervielle

Code INSEE: 62528

Commune principale: LOOS-EN-GOHELLE (62528)

Zone Lambert initiale : Lambert I Précision centroïde Décamètre

Projection	L.zone (centroïde)	L2e (centroïde)	L93 (centroïde)	L2e (adresse)
X (m)	630174	630232	683021	630649
Y (m)	305564	2606018	7039006	2606418
Préc.XY	Décamètre			rue

Carte géologique:

Carte	Numéro carte	Huitième
BETHUNE	19	8

4 - Propriété du site

Propriétaires:

Nom (raison sociale)	Date de référence (*)	Туре	Exploitant
Mercier (1,59 ha)	01/01/1993	Entreprise privée ou son représentant	Oui
SCI Mercier (1,89 ha)	01/01/1993	Entreprise privée ou son représentant	Oui
District de Lens- Liévin (0,43 ha)	01/01/1993	Organisme national parapublic ou son représentant	Non

Nombre de propriétaires actuels : Multiple Commentaire: Infos BDFI

5 - Activités du site

Etat d'occupation du site : Activité terminée Date de première activité : (*) 01/01/1111

Historique des activités sur le site :

N°	Libellé	Code	Date	Date	Importance	groupe	Date du	Ref.	Autres
ordre	activité	activité	début (*)	fin (*)		SEI	début	dossier	infos
1	Terrils et/ ou crassier de mines	V89.04Z	01/01/1111		?	groupe	? =Origine de la date non connue		

Exploitant(s) du site :

Nom de l'exploitant ou raison sociale	Date de début d'exploitation (*)	Date de fin d'exploitation (*)
HBNPC	01/01/1111	

Carreau et Terril du 5 Commentaire(s):

6 - Utilisations et projets

Nombre d'utilisateur(s) Multiple

actuel(s):

Nom utilisatour 7 - Utilisateurs:

Nom utilisateur	Type d'utilisateur	Statut utilisateur
Compagnie des Eaux (0,43 ha)	Entreprise privée ou son représentant	Locataire
Mercier (3,48 ha)	Entreprise privée ou son représentant	Propriétaire

Surface totale: 20.7

Site en friche: Partiellement Partiellement Site réaménagé: Type de réaménagement : zone d'activité

Réaménagement sensible : Non

Projet de réaménagement : zone d'activité Commentaire: Infos BDFI

8 - Environnement

Milieu d'implantation : Péri-urbain

Captage AEP: Non

Formation superficielle: Limons/Loess

Substratum: Calcaire tendre/Craie

Type de nappe : Libre

Nom de la nappe : Craie du sénonien

Type d'aquifère : Fissuré Code du système aquifère : 001h

Nom du système aquifère : ARTOIS/GOHELLE EST

9 - Etudes et actions

10 - Document(s) associé(s)

11 - Bibliographie

Source d'information : EPF / BDFI 93

12 - Synthèse historique

13 - Etudes et actions Basol

- (*) La convention retenue pour l'enregistrement des dates dans la banque de données BASIAS est la suivante :
- si la date n'est pas connue, le champ est saisi ainsi : 01/01/1111, ou sans date indiquée.
- si les dates ne sont pas connues mais qu'une chronologie relative a pu être établie dans une succession d'activités, d'exploitants, de propriétaires, ...etc., les champs "date" sont successivement :
 - - 01/01/1111,
 - 01/01/1112,
 - -01/01/1113,
 - - ou sans date indiquée,
- si l'année seule est connue, le champ date est : 01/01/année précise,
- si la date est connue précisément, elle est notée : jour/mois/année.

Annexe 2. Investigations initiales – Résultats d'analyses

Cette annexe contient 6 pages.

Desci	ription				PM1.1	PM1.2	PM2.1	PM3.1	PM4.1	PM4.2	PM5.1	PM6.1	PM6.2	PM7.1	PM8.1	PM9.1	PM10.1	PM10.2	PM11.1	PM11.2	PM12.1	ST13.1	ST14.1	ST15.1	ST15.2	ST15.4	ST16.1	ST16.2	ST17.1
Lithologie	-	Pas de Calais	IRSN - Teneur de référence		Remblais schisteux noirs	Limon légèrement argileux brun avec nodules de craie	schisteux	Limon marron avec nodules de craie	Remblais limoneux avec morceaux de craie	Limon brun avec nodules de craie	Remblais limoneux compact marron avec nodules de craie	Terre végétale et remblais	Remblais schisteux noirs	Remblais schisteux noirs	Remblais limono- sableux marron	Remblais schisteux rouges	Remblais schisteux rouges	Remblais crayeux	Remblais schisteux rouges	Remblais de démolition sableux	Remblais sablo- schisteux rouges	Remblais limono- sableux marron	Remblais schisteux noirs	Remblais schisteux noirs	Remblais schisteux noirs	Remblais schisteux noirs	Remblais limono- sableux marron	Remblais limono- sableux marron	Remblais limoneux marron avec nodules de craie
Profondeur	m				0,15 - 0,90	1,00 - 1,30	0,00 - 0,50	0,10 - 0,50	0,15 - 0,50	0,60 - 1,00	0,20 - 0,40	0,00 - 0,50	0,50 - 1,00	0,15 - 0,50	0,00 - 0,50	0,00 - 0,50	0,00 - 0,40	0,40 - 0,90	2,10 - 3,06	0,00 - 0,20	0,00 - 0,40	0,25 - 0,50	0,00 - 0,50	0,00 - 0,70	0,70 - 1,50	2,10 - 3,00	0,00 - 0,50	0,50 - 1,00	0,00 - 0,50
antimoine	mg/kg MS	1.13	0.2 à 10	30 à 500	na	<1.00	na	na	1.82	na	na	na	2.82	na	na	na	na	<1.00	na	3.65	na	na	na	na	2.58	na	na	3.65	na
arsenic	mg/kg MS	13.5	-	-	5.08	6.37	12.6	5.36	8.97	8.51	9.67	14.4	12.7	16	9.49	14.7	12.8	6.56	9.59	19.4	13.5	7.69	10.9	10.7	11.4	7.34	9.39	10.3	4.65
baryum	mg/kg MS		562	5620	na	78.5	na	na	69.8	na	na	na	144	na	na	na	na	72.8	na	126	na	na	na	na	145	na	na	157	na
cadmium	mg/kg MS	0.93	-	-	< 0.40	< 0.40	<0.40	<0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	<0.40	<0.40	< 0.40	8.15	<0.40	0.4	<0.40	0.73	< 0.40	< 0.40	< 0.40	< 0.40	<0.40	<0.40	< 0.40	<0.40
chrome	mg/kg MS	69.7	-	-	14.5	19.3	17.4	17.1	22	25.2	21.8	19.7	20.6	21.7	20.8	31.5	25.9	10.4	22.3	18.4	59.5	16.9	18.9	21.7	20.9	16.7	19.1	20	10.7
cuivre	mg/kg MS	32.7	-	-	42.7	8.8	69.6	6.83	11	10.8	20.2	67.8	66.1	85.3	23.1	37.6	63.7	36.4	35.9	47.8	36.6	17.2	44.9	62.1	53	38.9	31.1	32.1	8.77
molybdène	mg/kg MS	0.72	-	-	na	<1.00	na	na	<1.00	na	na	na	1.3	na	na	na	na	<1.00	na	1.25	na	na	na	na	1.43	na	na	1.08	na
nickel	mg/kg MS	30.7	2	-	39.4	16.2	48.7	13.7	14.8	19.6	20.1	43.3	46.7	57.3	16.4	45.5	38.3	8.45	40.1	25.6	31.2	18.8	32.8	39.5	39.3	29.3	21.8	22.8	10.1
plomb	mg/kg MS	108.7	-	-	20	11.2	41.9	9.65	22.1	12.5	38.1	80.6	39.2	43.1	64.4	50.3	225	32.4	141	62.3	71	24.3	31.1	28.2	31.9	24.8	58.6	33.9	7.69
sélénium	mg/kg MS	0.38	-	-	na	<10.0	na	na	<10.0	na	na	na	<10.0	na	na	na	na	<10.0	na	<10.0	na	na	na	na	<10.0	na	na	<10.0	na
zinc	mg/kg MS	109.6	-	-	59.3	37.8	114	32.5	37.1	39.3	94.8	119	88.3	111	156	114	246	34.6	111	276	97.3	73.5	80.9	73.9	79.6	63.9	124	129	26.8
mercure	mg/kg MS	0.264	-	-	<0.10	<0.10	0.3	<0.10	<0.10	<0.10	7.02	0.19	0.18	0.18	0.26	<0.10	0.13	<0.10	<0.10	0.13	0.1	<0.10	<0.10	<0.10	<0.10	0.11	0.1	0.11	<0.10

Tableau 15 : Résultats des analyses chimiques en laboratoire sur les sols en métaux lourds (PM1.1 à ST17.1)

Descr	intion				ST18.1	ST18.2	ST19.1	ST20.1	ST21.1	ST21.2	ST22.1	ST23.1	ST24.1	ST25.1	ST26.1	ST27.1	ST28.1	ST28.2	S29.1	ST30.1	ST31.2	ST32.1	ST32.2	ST32.4	ST33.1	ST34.1	ST34.4	ST35.1
Lithologie	-	Pas de Calais	IRSN - Teneur de référence	IRSN - Teneur Iimite	Remblais limono- sableux marron	Remblais limono- sableux marron	Remblais limono- sableux marron	Remblais limono- sableux marron	Remblais schisteux noirs	Remblais schisteux noirs	Remblais schisteux noirs	Remblais limono- sableux marron	Remblais schisteux noirs	Remblais limono- sableux marron	Remblais limono- schisteux noirâtres	Remblais schisteux noirs	Remblais schisteux noirs	Remblais schisteux noirs	Remblais limono- sableux marron gris	Remblais limono- sableux	Remblais sablo- limoneux beige	Remblais sableux marron à gris	Remblais sableux marron à gris	Remblais sableux marron à gris	Remblais schisteux noirs	Remblais schisteux	Remblais schisteux légèrement limoneux noirâtres	Remblais limono- sableux
Profondeur	m				0,00 - 0,50	0,60 - 1,20	0,00 - 0,50	0,00 - 0,50	0,00 - 0,50	0,60 - 1,20	0,00 - 0,50	0,00 - 0,50	0,00 - 0,50	0,50 - 1,00	0,00 - 0,60	0,00 - 0,60	0,00 - 1,00	1,40 - 2,00	0,00 - 0,70	0,00 - 0,50	0,80 - 1,50	0,00 - 0,60	0,60 - 1,00	2,00 - 3,00	0,00 - 0,70	0,00 - 0,70	2,30 - 3,00	0,00 - 0,50
antimoine	mg/kg MS	1.13	0.2 à 10	30 à 500	2.65	na	na	na	1.88	na	na	na	na	na	na	na	2.27	na	na	na	1.34	na	1.71	na	na	na	na	na
arsenic	mg/kg MS	13.5	-	-	12.5	15.7	11.1	13.3	10.4	16.8	13.5	9.66	13.7	11.5	9.31	11.7	16.2	9.11	12.9	10.7	11.6	4.09	10.6	6.83	15.8	22	19.4	6.06
baryum	mg/kg MS	-	562	5620	122	na	na	na	85.1	na	na	na	na	na	na	na	132	na	na	na	49.5	na	141	na	na	na	na	na
cadmium	mg/kg MS	0.93	-		<0.40	< 0.40	<0.40	<0.40	<0.40	<0.40	< 0.40	<0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	<0.40	< 0.40	< 0.40	<0.40	< 0.40	1.29	< 0.40	<0.40
chrome	mg/kg MS	69.7	-		23.1	25.3	20	24.4	14.3	17.2	20.5	21.6	21.6	18.5	14.3	16.5	10	11.4	18.1	19.1	28.6	5.66	14.6	15.8	6.35	18.6	19.9	15.9
cuivre	mg/kg MS	32.7	-		45	53.7	51	34.1	46.7	59.5	72	50.2	66.4	51.8	45.5	59	83.6	44.1	48.2	81.6	9.57	25.7	45.9	26.6	82.2	76.2	60.6	22
molybdène	mg/kg MS	0.72	-	-	1.73	na	na	na	<1.00	na	na	na	na	na	na	na	1.78	na	na	na	<1.00	na	<1.00	na	na	na	na	na
nickel	mg/kg MS	30.7	2	-	47	49.2	42.3	30	38.9	44.8	50.6	44	48.3	33.5	29.7	44.9	22.2	21.9	59.5	34.6	11.7	6.95	16.1	17.3	39.1	31	35.6	12.9
plomb	mg/kg MS	108.7	-	-	33.7	35.9	50.5	24.2	24.9	32.4	43	24.1	36.1	37.2	20.7	33.5	48.6	38.7	29.9	158	11.9	7.55	27.6	21.8	32.6	176	71	22.5
sélénium	mg/kg MS	0.38	-	-	<10.0	na	na	na	<10.0	na	na	na	na	na	na	na	<10.0	na	na	na	<10.0	na	<10.0	na	na	na	na	na
zinc	mg/kg MS	109.6	-	-	88.2	94.5	104	57.3	78.1	87.5	104	77	95.4	92.3	62.8	101	218	102	100	129	31.3	24.8	55.1	44.4	75.3	1040	213	54
mercure	mg/kg MS	0.264	-	-	0.1	<0.10	0.16	<0.10	<0.10	<0.10	0.12	0.62	<0.10	0.29	0.12	0.3	0.21	0.18	0.13	0.11	<0.10	<0.10	0.23	<0.10	0.2	0.25	0.11	<0.10

Tableau 16 : Résultats des analyses chimiques en laboratoire sur les sols en métaux lourds (ST18.1 à ST35.1)

DII					_																									
Description		ISDI	ISDND	ISDD	PM1.1	PM1.2	PM2.2	PM3.2	PM4.1	PM4.2	PM5.1	PM5.3	PM6.2	PM6.4	PM7.2	PM8.1	PM8.2	PM9.2	PM10.1	PM10.2	PM10.3	PM11.2	PM11.4	PM12.2	ST13.1	ST14.2	ST15.2	ST15.4	ST16.2	ST16.4
Paramètres	Unités																												1 '	
Lithologie	-	Arrêté du 28/10/2010	Conseil UE 19/12/2002 et critères FNADE (organiques)	Conseil UE 19/12/2002 et critères FNADE (organiques)	Remblais schisteux noirs	Limon légèrement argileux brun avec nodules de craie	Remblais schisteux noirs	Limon marron avec nodules de craie	Remblais limoneux avec morceaux de craie	Limon brun avec nodules de craie	Remblais limoneux compact marron avec nodules de craie	Craie	Remblais schisteux noir	Remblais s schisteux noin	Remblais s schisteux noirs	Remblais Iimono-sableux marron	Remblais schisteux rouges	Remblais limoneux brun	Remblais schisteux rouges	Remblais crayeux	Remblais schisteux noirs	Remblais de démolition sableux	Remblais schisteux noirs	Remblais sablo- schisteux noirs	Remblais limono-sableux s marron	Remblais schisteux noirs	Remblais s schisteux noirs	Remblais schisteux noirs	Remblais limono-sableux marron	Limon brun avec nodules de craie
																													<u> </u>	
Profondeur	m				0,15 - 0,90	1,00 - 1,30	0,50 - 1,00	0,50 - 1,00	0,15 - 0,50	0,60 - 1,00	0,20 - 0,40	1,00 - 1,70	0,50 - 1,00		0,50 - 1,00	0,00 - 0,50	0,80 - 1,30	-, - ,	0,00 - 0,40			0,00 - 0,20	2,20 - 3,00	0,50 - 1,20	0,25 - 0,50	0,60 - 1,00	0,70 - 1,50	2,10 - 3,00	0,50 - 1,00	2,30 - 2,90
matière sèche (siccité)	% massique		C < 70 %		91	83.4	91.6	82.4	85.8	82.9	88.5	80.7	92.3	89.7	92.2	89.5	93.9	83.8	92.1	81.2	90	90	83	91	85.7	91	90.7	90	88.1	79.6
COT**	mg/kg MS	30000	5%	6%	na	7700	na	na	6640	na	na	na	142000	na	na	na	na	na	na	25300	na	77100	na	na	na	na	160000	na	50700	na
														MPOSES AROM	ATIQUES VOLA	TILS			1							1				
Benzène	mg/kg MS	(<0,5)	0,5 <c<6< td=""><td>6<c<30< td=""><td>na</td><td>na</td><td>na</td><td>na</td><td><0.05</td><td>na</td><td>na</td><td>na</td><td><0.05</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td><0.05</td><td><0.05</td><td>na</td><td>na</td><td>na</td><td>na</td><td><0.05</td><td>na</td><td>na</td><td>na</td></c<30<></td></c<6<>	6 <c<30< td=""><td>na</td><td>na</td><td>na</td><td>na</td><td><0.05</td><td>na</td><td>na</td><td>na</td><td><0.05</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td><0.05</td><td><0.05</td><td>na</td><td>na</td><td>na</td><td>na</td><td><0.05</td><td>na</td><td>na</td><td>na</td></c<30<>	na	na	na	na	<0.05	na	na	na	<0.05	na	na	na	na	na	na	na	<0.05	<0.05	na	na	na	na	<0.05	na	na	na
Toluène	mg/kg MS				na	na	na	na	<0.05	na	na	na	0.12	na	na	na	na	na	na	na	<0.05	<0.05	na	na	na	na	<0.05	na	na	na
Ethylbenzène	mg/kg MS				na	na	na	na	<0.05	na	na	na	< 0.05	na	na	na	na	na	na	na	<0.05	<0.05	na	na	na	na	< 0.05	na	na	na
Para- et métaxylène	mg/kg MS				na	na	na	na	<0.05	na	na	na	0.21	na	na	na	na	na	na	na	<0.05	<0.05	na	na	na	na	<0.05	na	na	na
Orthoxylène	mg/kg MS				na	na	na	na	< 0.05	na	na	na	< 0.05	na	na	na	na	na	na	na	<0.05	< 0.05	na	na	na	na	<0.05	na	na	na
BTEX total	mg/kg MS	6	30	>30	na	na	na	na	< 0.250	na	na	na	0.33 <x<0.48< td=""><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td><0.25</td><td>< 0.250</td><td>na</td><td>na</td><td>na</td><td>na</td><td><0.250</td><td>na</td><td>na</td><td>na</td></x<0.48<>	na	na	na	na	na	na	na	<0.25	< 0.250	na	na	na	na	<0.250	na	na	na
													HYDROCA	RBURES AROM	ATIQUES POLY	CYCLIQUES														
naphtalène	mg/kg MS	(<3)	3 <c<20< td=""><td>>20</td><td>0.6</td><td>< 0.05</td><td>na</td><td>na</td><td><0.05</td><td>na</td><td>na</td><td>na</td><td>0.15</td><td>0.15</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td><0.05</td><td>na</td><td>0.19</td><td>< 0.05</td><td>na</td><td>< 0.05</td><td>na</td><td><0.05</td><td>na</td><td>0.11</td><td>na</td></c<20<>	>20	0.6	< 0.05	na	na	<0.05	na	na	na	0.15	0.15	na	na	na	na	na	<0.05	na	0.19	< 0.05	na	< 0.05	na	<0.05	na	0.11	na
acénaphtylène	mg/kg MS				<0.05	< 0.05	na	na	<0.05	na	na	na	< 0.05	< 0.05	na	na	na	na	na	< 0.05	na	0.29	< 0.05	na	< 0.05	na	< 0.05	na	0.25	na
acénaphtène	mg/kg MS				0.18	< 0.05	na	na	< 0.05	na	na	na	< 0.05	< 0.05	na	na	na	na	na	<0.05	na	0.19	< 0.05	na	< 0.05	na	< 0.05	na	0.21	na
fluorène	mg/kg MS				<0.05	< 0.05	na	na	< 0.05	na	na	na	< 0.05	< 0.05	na	na	na	na	na	< 0.05	na	0.12	< 0.05	na	< 0.05	na	< 0.05	na	0.55	na
phénanthrène	mg/kg MS				1.3	< 0.05	na	na	< 0.05	na	na	na	0.27	0.23	na	na	na	na	na	0.16	na	1.5	0.27	na	0.19	na	0.12	na	4.7	na
anthracène	mg/kg MS				<0.05	< 0.05	na	na	< 0.05	na	na	na	< 0.05	< 0.05	na	na	na	na	na	< 0.05	na	0.64	0.054	na	0.057	na	< 0.05	na	1.2	na
fluoranthène	mg/kg MS				0.065	< 0.05	na	na	< 0.05	na	na	na	0.057	< 0.05	na	na	na	na	na	0.2	na	2.2	0.21	na	0.22	na	0.065	na	5.3	na
pyrène	mg/kg MS				0.16	< 0.05	na	na	< 0.05	na	na	na	0.062	< 0.05	na	na	na	na	na	0.19	na	1.7	0.18	na	0.18	na	0.05	na	5.5	na
benzo(a)anthracène	mg/kg MS				0.19	< 0.05	na	na	0.096	na	na	na	0.14	< 0.05	na	na	na	na	na	0.13	na	1.3	0.19	na	0.14	na	0.063	na	3.1	na
chrysène	mg/kg MS				0.2	< 0.05	na	na	< 0.05	na	na	na	0.14	< 0.05	na	na	na	na	na	0.13	na	1.3	0.21	na	0.14	na	0.074	na	3.3	na
benzo(b)fluoranthène	mg/kg MS				0.067	< 0.05	na	na	< 0.05	na	na	na	0.075	0.062	na	na	na	na	na	0.13	na	2	0.18	na	0.18	na	< 0.05	na	1.9	na
benzo(k)fluoranthène	mg/kg MS				< 0.05	< 0.05	na	na	< 0.05	na	na	na	< 0.05	< 0.05	na	na	na	na	na	< 0.05	na	0.67	0.056	na	0.056	na	< 0.05	na	0.55	na
benzo(a)pyrène	mg/kg MS	(<1)	1 <c<5< td=""><td>>5</td><td>< 0.05</td><td>< 0.05</td><td>na</td><td>na</td><td>< 0.05</td><td>na</td><td>na</td><td>na</td><td>< 0.05</td><td>< 0.05</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>0.063</td><td>na</td><td>1.5</td><td>0.13</td><td>na</td><td>0.1</td><td>na</td><td>< 0.05</td><td>na</td><td>1.1</td><td>na</td></c<5<>	>5	< 0.05	< 0.05	na	na	< 0.05	na	na	na	< 0.05	< 0.05	na	na	na	na	na	0.063	na	1.5	0.13	na	0.1	na	< 0.05	na	1.1	na
dibenzo(ah)anthracène	mg/kg MS				< 0.05	< 0.05	na	na	< 0.05	na	na	na	< 0.05	< 0.05	na	na	na	na	na	< 0.05	na	0.43	0.07	na	< 0.05	na	< 0.05	na	0.45	na
benzo(ghi)pérylène	mg/kg MS				< 0.05	< 0.05	na	na	< 0.05	na	na	na	< 0.05	< 0.05	na	na	na	na	na	0.071	na	0.9	0.078	na	0.051	na	< 0.05	na	0.9	na
indéno(1,2,3-cd)pyrène	mg/kg MS				< 0.05	< 0.05	na	na	< 0.05	na	na	na	< 0.05	< 0.05	na	na	na	na	na	0.078	na	1.3	0.11	na	0.057	na	< 0.05	na	0.99	na
Somme des HAP (16) - EPA	mg/kg MS	50	100	100 <c<500< td=""><td>2.762<x<3.162< td=""><td><0.8</td><td>na</td><td>na</td><td>0.096<x<0.846< td=""><td>na</td><td>na</td><td>na</td><td>0.894<x<1.34< td=""><td>4 0.442<x<1.09< td=""><td>2 na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>1.152<x<1.50< td=""><td>na na</td><td>16</td><td>1.738<x<1.938< td=""><td>na</td><td>1.371<x<1.621< td=""><td>na</td><td>0.372<x<0.922< td=""><td>na</td><td>30</td><td>na</td></x<0.922<></td></x<1.621<></td></x<1.938<></td></x<1.50<></td></x<1.09<></td></x<1.34<></td></x<0.846<></td></x<3.162<></td></c<500<>	2.762 <x<3.162< td=""><td><0.8</td><td>na</td><td>na</td><td>0.096<x<0.846< td=""><td>na</td><td>na</td><td>na</td><td>0.894<x<1.34< td=""><td>4 0.442<x<1.09< td=""><td>2 na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>1.152<x<1.50< td=""><td>na na</td><td>16</td><td>1.738<x<1.938< td=""><td>na</td><td>1.371<x<1.621< td=""><td>na</td><td>0.372<x<0.922< td=""><td>na</td><td>30</td><td>na</td></x<0.922<></td></x<1.621<></td></x<1.938<></td></x<1.50<></td></x<1.09<></td></x<1.34<></td></x<0.846<></td></x<3.162<>	<0.8	na	na	0.096 <x<0.846< td=""><td>na</td><td>na</td><td>na</td><td>0.894<x<1.34< td=""><td>4 0.442<x<1.09< td=""><td>2 na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>1.152<x<1.50< td=""><td>na na</td><td>16</td><td>1.738<x<1.938< td=""><td>na</td><td>1.371<x<1.621< td=""><td>na</td><td>0.372<x<0.922< td=""><td>na</td><td>30</td><td>na</td></x<0.922<></td></x<1.621<></td></x<1.938<></td></x<1.50<></td></x<1.09<></td></x<1.34<></td></x<0.846<>	na	na	na	0.894 <x<1.34< td=""><td>4 0.442<x<1.09< td=""><td>2 na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>1.152<x<1.50< td=""><td>na na</td><td>16</td><td>1.738<x<1.938< td=""><td>na</td><td>1.371<x<1.621< td=""><td>na</td><td>0.372<x<0.922< td=""><td>na</td><td>30</td><td>na</td></x<0.922<></td></x<1.621<></td></x<1.938<></td></x<1.50<></td></x<1.09<></td></x<1.34<>	4 0.442 <x<1.09< td=""><td>2 na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>1.152<x<1.50< td=""><td>na na</td><td>16</td><td>1.738<x<1.938< td=""><td>na</td><td>1.371<x<1.621< td=""><td>na</td><td>0.372<x<0.922< td=""><td>na</td><td>30</td><td>na</td></x<0.922<></td></x<1.621<></td></x<1.938<></td></x<1.50<></td></x<1.09<>	2 na	na	na	na	na	1.152 <x<1.50< td=""><td>na na</td><td>16</td><td>1.738<x<1.938< td=""><td>na</td><td>1.371<x<1.621< td=""><td>na</td><td>0.372<x<0.922< td=""><td>na</td><td>30</td><td>na</td></x<0.922<></td></x<1.621<></td></x<1.938<></td></x<1.50<>	na na	16	1.738 <x<1.938< td=""><td>na</td><td>1.371<x<1.621< td=""><td>na</td><td>0.372<x<0.922< td=""><td>na</td><td>30</td><td>na</td></x<0.922<></td></x<1.621<></td></x<1.938<>	na	1.371 <x<1.621< td=""><td>na</td><td>0.372<x<0.922< td=""><td>na</td><td>30</td><td>na</td></x<0.922<></td></x<1.621<>	na	0.372 <x<0.922< td=""><td>na</td><td>30</td><td>na</td></x<0.922<>	na	30	na
						•	•							POLYCHLOROE	SIPHENYLS (PCI	3)												•		
PCB 28	mg/kg MS				na	< 0.01	na	na	<0.01	na	na	na	< 0.01	na	na	<0.01	na	na	na	<0.01	na	<0.01	na	na	na	na	<0.01	na	<0.01	na
PCB 52	mg/kg MS				na	< 0.01	na	na	<0.01	na	na	na	< 0.01	na	na	<0.01	na	na	na	<0.01	na	< 0.01	na	na	na	na	<0.01	na	<0.01	na
PCB 101	mg/kg MS				na	< 0.01	na	na	<0.01	na	na	na	< 0.01	na	na	<0.01	na	na	na	<0.01	na	< 0.01	na	na	na	na	<0.01	na	<0.01	na
PCB 118	mg/kg MS				na	<0.01	na	na	<0.01	na	na	na	< 0.01	na	na	<0.01	na	na	na	<0.01	na	< 0.01	na	na	na	na	<0.01	na	0.01	na
PCB 138	mg/kg MS				na	< 0.01	na	na	<0.01	na	na	na	< 0.01	na	na	<0.01	na	na	na	<0.01	na	< 0.01	na	na	na	na	<0.01	na	0.02	na
PCB 153	mg/kg MS				na	< 0.01	na	na	<0.01	na	na	na	< 0.01	na	na	<0.01	na	na	na	<0.01	na	<0.01	na	na	na	na	<0.01	na	0.02	na
PCB 180	mg/kg MS				na	< 0.01	na	na	<0.01	na	na	na	< 0.01	na	na	<0.01	na	na	na	<0.01	na	< 0.01	na	na	na	na	<0.01	na	<0.01	na
PCB totaux (7)	mg/kg MS	1	1 <c<10< td=""><td>10<c<50< td=""><td>na</td><td><0.07</td><td>na</td><td>na</td><td><0.07</td><td>na</td><td>na</td><td>na</td><td><0.07</td><td>na</td><td>na</td><td><0.07</td><td>na</td><td>na</td><td>na</td><td><0.07</td><td>na</td><td>< 0.07</td><td>na</td><td>na</td><td>na</td><td>na</td><td><0.07</td><td>na</td><td>0.05<x<0.09< td=""><td>na</td></x<0.09<></td></c<50<></td></c<10<>	10 <c<50< td=""><td>na</td><td><0.07</td><td>na</td><td>na</td><td><0.07</td><td>na</td><td>na</td><td>na</td><td><0.07</td><td>na</td><td>na</td><td><0.07</td><td>na</td><td>na</td><td>na</td><td><0.07</td><td>na</td><td>< 0.07</td><td>na</td><td>na</td><td>na</td><td>na</td><td><0.07</td><td>na</td><td>0.05<x<0.09< td=""><td>na</td></x<0.09<></td></c<50<>	na	<0.07	na	na	<0.07	na	na	na	<0.07	na	na	<0.07	na	na	na	<0.07	na	< 0.07	na	na	na	na	<0.07	na	0.05 <x<0.09< td=""><td>na</td></x<0.09<>	na
												•		HYDROCARB	URES TOTAUX	•			*								*			
fraction C10-C16	mg/kg MS				55.6	<4.00	38.1	1.07	<4.00	20.6	11.2	<4.00	9.62	5.87	16.1	na	<4.00	2.57	8.77	2.76	78.5	34.8	14	32.7	2.81	<4.00	1.89	10.4	18.6	5.32
fraction C16-C22	mg/kg MS				67.9	<4.00	43.5	4.23	<4.00	9.06	11.8	<4.00	10.6	8.39	25.8	na	<4.00	7.97	19.4	9.4	114	89	22.6	80.4	8.35	<4.00	2.98	16.9	53.5	4.43
fraction C22 - C30	mg/kg MS				52.3	<4.00	39.9	6.29	<4.00	7.73	18.8	<4.00	11.4	9.28	22.1	na	<4.00	14.3	131	22.1	125	97.1	43.5	125	15	<4.00	6.21	48.9	117	7.09
fraction C30 - C40	mg/kg MS				18	<4.00	15	10.8	<4.00	8.56	16.3	<4.00	5.83	5.21	5.32	na	<4.00	12.2	153	14.3	51.5	150	33.1	72.6	12.3	<4.00	7.28	11.9	102	8.87
hydrocarbures totaux C10-C40	mg/kg MS	<500	500 <c<2000< td=""><td>2000<c<10000< td=""><td>194</td><td><15.0</td><td>137</td><td>22.3</td><td><15.0</td><td>45.9</td><td>58.1</td><td><15.0</td><td>37.5</td><td>28.7</td><td>69.2</td><td>na</td><td><15.0</td><td>37.1</td><td>312</td><td>48.6</td><td>369</td><td>371</td><td>113</td><td>311</td><td>38.5</td><td><15.0</td><td>18.4</td><td>88.1</td><td>292</td><td>25.7</td></c<10000<></td></c<2000<>	2000 <c<10000< td=""><td>194</td><td><15.0</td><td>137</td><td>22.3</td><td><15.0</td><td>45.9</td><td>58.1</td><td><15.0</td><td>37.5</td><td>28.7</td><td>69.2</td><td>na</td><td><15.0</td><td>37.1</td><td>312</td><td>48.6</td><td>369</td><td>371</td><td>113</td><td>311</td><td>38.5</td><td><15.0</td><td>18.4</td><td>88.1</td><td>292</td><td>25.7</td></c<10000<>	194	<15.0	137	22.3	<15.0	45.9	58.1	<15.0	37.5	28.7	69.2	na	<15.0	37.1	312	48.6	369	371	113	311	38.5	<15.0	18.4	88.1	292	25.7
					_								•		•															

Tableau 17 : Résultats des analyses sur les échantillons – composés organiques (PM1.2 à ST16.4)

Description		ISDI	ISDND	ISDD	ST17.3	ST18.1	ST18.3	ST19.3	ST20.3	ST21.1	ST21.3	ST22.2	ST23.2	ST24.2	ST25.3	ST26.2	ST27.2	ST28.1	ST28.2	ST29.3	ST30.2	ST31.1	ST31.2	ST32.1	ST32.2	ST32.4	ST33.2	ST34.1	ST34.4	ST35.3
Paramètres	Unités	ЮЫ	ISBN 60	ISDO	3117.3	3110.1	3110.3	3119.3	3120.3	3121.1	3121.3	3122.2	3123.2	3124.2	3123.3	3120.2	3127.2	3120.1	3120.2	3129.3	3130.2	3131.1	3131.2	3132.1	3132.2	3132.4	3133.2			3133.3
Lithologie	-	Arrêté du 28/10/2010	Conseil UE 19/12/2002 et critères FNADE (organiques)	Conseil UE 19/12/2002 et critères FNADE (organiques)		- Remblais limono- sableux marron	Schistes noirs	Remblais limono- schisteux noirâtres	Remblais crayeux	Remblais schisteux noirs	Remblais schisteux noirs	Remblais schisteux noirs	Remblais limono-sableux marron	Remblais schisteux noirs	Remblais limoneux	Remblais limono- schisteux noirâtres	Remblais schisteux noirs	Remblais schisteux noirs	Remblais schisteux noirs	Remblais limono-sableux marron gris	Remblais Iimono-sableux	Remblais sablo- schisteux noirâtres	Remblais sablo-limoneux beige	Remblais sableux marron à gris	Remblais sableux marron à gris	Remblais sableux marron à gris	Remblais schisteux noirs	Remblais schisteux légèrement limoneux noirâtres	Remblais schisteux légèrement limoneux noirâtres	Remblais limono-sableux
Profondeur	m				1,40 - 2,00	0,00 - 0,50	1,60 - 2,10	1,60 - 2,20	1,50 - 2,50	0,00 - 0,50	1,60 - 2,10	0,60 - 1,10	0,50 - 1,00	0,60 - 1,10	1,60 - 2,40	0,70 - 1,30	1,00 - 1,50	0,00 - 1,00	1,40 - 2,00	1,80 - 2,80	0,60 - 1,10	0,00 - 0,50	0,80 - 1,50	0,00 - 0,60	0,60 - 1,00	2,00 - 3,00	0,70 - 1,50	0,00 - 0,70	2,30 - 3,00	1,50 - 2,30
matière sèche (siccité)	% massique		C < 70 %	C < 70 %	83.7	91.4	87.3	90.3	82.6	93.3	92.6	90.2	91.7	89.2	85.3	86.6	87.3	92.9	88.9	91.5	90.8	90.7	89.8	88.5	89.7	94	94.2	89.8	88.1	91.7
COT**	mg/kg MS	30000	5%	6%	na	46900	na	na	na	179000	na	na	na	na	na	na	na	416000	na	na	na	na	7530	na	47700	na	na	na	na	na
													CON	IPOSES AROMA	TIQUES VOLA	TILS														
Benzène	mg/kg MS	(<0,5)	0,5 <c<6< td=""><td>6<c<30< td=""><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td><0.05</td><td>na</td><td>na</td><td>< 0.05</td><td>na</td><td><0.05</td><td>na</td><td>0.17</td><td>na</td><td>na</td><td>na</td></c<30<></td></c<6<>	6 <c<30< td=""><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td><0.05</td><td>na</td><td>na</td><td>< 0.05</td><td>na</td><td><0.05</td><td>na</td><td>0.17</td><td>na</td><td>na</td><td>na</td></c<30<>	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	<0.05	na	na	< 0.05	na	<0.05	na	0.17	na	na	na
Toluène	mg/kg MS				na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	<0.05	na	na	< 0.05	na	< 0.05	na	0.08	na	na	na
Ethylbenzène	mg/kg MS				na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	<0.05	na	na	< 0.05	na	<0.05	na	<0.05	na	na	na
Para- et métaxylène	mg/kg MS				na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	0.07	na	na	< 0.05	na	< 0.05	na	<0.05	na	na	na
Orthoxylène	mg/kg MS				na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	<0.05	na	na	<0.05	na	<0.05	na	<0.05	na	na	na
BTEX total	mg/kg MS	6	30	>30	na	na	na	na	na	na	na	na	na LIVERDOOAE	na	na	na OVOLIOUEO	na	na	na	0.07 <x<0.27< td=""><td>na</td><td>na</td><td><0.250</td><td>na</td><td><0.250</td><td>na</td><td>0.25<x<0.4< td=""><td>na</td><td>na</td><td>na</td></x<0.4<></td></x<0.27<>	na	na	<0.250	na	<0.250	na	0.25 <x<0.4< td=""><td>na</td><td>na</td><td>na</td></x<0.4<>	na	na	na
bi-D	I // 140 I	(0)	0.0.00	00		0.000				0.00			HYDROCAF	RBURES AROMA	TIQUES POLY	CYCLIQUES		0.00		0.070			<0.05		0.05		0.00			
naphtalène acénaphtylène	mg/kg MS mg/kg MS	(<3)	3 <c<20< td=""><td>>20</td><td>na na</td><td>0.092 <0.05</td><td>na na</td><td>na na</td><td>na na</td><td>0.09 <0.05</td><td>na na</td><td>na na</td><td>na na</td><td>na na</td><td>na na</td><td>IId no</td><td>na</td><td>0.22</td><td>na na</td><td>0.072 <0.05</td><td>IId no</td><td>na na</td><td>0.053</td><td>na na</td><td><0.05 0.13</td><td>na na</td><td>0.28 <0.05</td><td>na na</td><td>na na</td><td>na na</td></c<20<>	>20	na na	0.092 <0.05	na na	na na	na na	0.09 <0.05	na na	na na	na na	na na	na na	IId no	na	0.22	na na	0.072 <0.05	IId no	na na	0.053	na na	<0.05 0.13	na na	0.28 <0.05	na na	na na	na na
acenaphtène					na	<0.05	IId	III.	III	<0.05	na	IId	IId no	na	Fld.	IId.	na na	0.15	IId	<0.05	na	na na	< 0.05	na	<0.05	IId	0.14	Hd no	na na	IId.
fluorène	mg/kg MS mg/kg MS				na	<0.05	na na	na na	na na	<0.05	na na	na na	na na	na	Hd na	na na	na	0.17	na na	<0.05	na	na na	<0.05	na na	<0.05	na na	0.14	na na	na na	na na
phénanthrène	mg/kg MS				na	0.27	na na	na na	na	0.21	na	na na	na	na	na	na	na	1.7	na na	0.21	na	na	0.15	na	0.22	na	0.001	na na	na na	na na
anthracène	mg/kg MS				na	<0.05	na	na	na	<0.05	na	na	na	na	na	na	na	0.26	na	<0.05	na	na	0.13	na	0.08	na	<0.05	na	na	na
fluoranthène	mg/kg MS				na	<0.05	na	na	na	<0.05	na	na	na	na	na	na	na	0.52	na	0.068	na	na	0.45	na	0.44	na	0.1	na	na	na
pyrène	mg/kg MS				na	0.067	na	na	na	0.071	na	na	na	na	na	na	na	0.63	na	0.07	na	na	0.33	na	0.34	na	0.14	na	na	na
benzo(a)anthracène	mg/kg MS				na	0.1	na	na	na	0.11	na	na	na	na	na	na	na	0.57	na	0.1	na	na	0.26	na	0.32	na	0.2	na	na	na
chrysène	mg/kg MS				na	0.097	na	na	na	0.11	na	na	na	na	na	na	na	0.58	na	0.11	na	na	0.25	na	0.33	na	0.21	na	na	na
benzo(b)fluoranthène	mg/kg MS				na	<0.05	na	na	na	<0.05	na	na	na	na	na	na	na	0.24	na	0.09	na	na	0.52	na	0.78	na	0.16	na	na	na
benzo(k)fluoranthène	mg/kg MS				na	< 0.05	na	na	na	< 0.05	na	na	na	na	na	na	na	< 0.05	na	< 0.05	na	na	0.17	na	0.23	na	< 0.05	na	na	na
benzo(a)pyrène	mg/kg MS	(<1)	1 <c<5< td=""><td>>5</td><td>na</td><td>< 0.05</td><td>na</td><td>na</td><td>na</td><td>< 0.05</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>0.14</td><td>na</td><td>< 0.05</td><td>na</td><td>na</td><td>0.42</td><td>na</td><td>0.52</td><td>na</td><td>0.092</td><td>na</td><td>na</td><td>na</td></c<5<>	>5	na	< 0.05	na	na	na	< 0.05	na	na	na	na	na	na	na	0.14	na	< 0.05	na	na	0.42	na	0.52	na	0.092	na	na	na
dibenzo(ah)anthracène	mg/kg MS				na	< 0.05	na	na	na	< 0.05	na	na	na	na	na	na	na	< 0.05	na	<0.05	na	na	0.11	na	0.2	na	< 0.05	na	na	na
benzo(ghi)pérylène	mg/kg MS				na	< 0.05	na	na	na	< 0.05	na	na	na	na	na	na	na	0.054	na	<0.05	na	na	0.23	na	0.45	na	< 0.05	na	na	na
indéno(1,2,3-cd)pyrène	mg/kg MS				na	< 0.05	na	na	na	< 0.05	na	na	na	na	na	na	na	< 0.05	na	< 0.05	na	na	0.43	na	0.73	na	< 0.05	na	na	na
Somme des HAP (16) - EPA	mg/kg MS	50	100	100 <c<500< td=""><td>na</td><td>0.626<x<1.176< td=""><td>na</td><td>na</td><td>na</td><td>0.591<x<1.141< td=""><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>5.434<x<5.584< td=""><td>na</td><td>0.72<x<1.17< td=""><td>na</td><td>na</td><td>3.483<x<3.633< td=""><td>na</td><td>4.77<x<4.92< td=""><td>na</td><td>2.363<x<2.663< td=""><td>na</td><td>na</td><td>na</td></x<2.663<></td></x<4.92<></td></x<3.633<></td></x<1.17<></td></x<5.584<></td></x<1.141<></td></x<1.176<></td></c<500<>	na	0.626 <x<1.176< td=""><td>na</td><td>na</td><td>na</td><td>0.591<x<1.141< td=""><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>5.434<x<5.584< td=""><td>na</td><td>0.72<x<1.17< td=""><td>na</td><td>na</td><td>3.483<x<3.633< td=""><td>na</td><td>4.77<x<4.92< td=""><td>na</td><td>2.363<x<2.663< td=""><td>na</td><td>na</td><td>na</td></x<2.663<></td></x<4.92<></td></x<3.633<></td></x<1.17<></td></x<5.584<></td></x<1.141<></td></x<1.176<>	na	na	na	0.591 <x<1.141< td=""><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>5.434<x<5.584< td=""><td>na</td><td>0.72<x<1.17< td=""><td>na</td><td>na</td><td>3.483<x<3.633< td=""><td>na</td><td>4.77<x<4.92< td=""><td>na</td><td>2.363<x<2.663< td=""><td>na</td><td>na</td><td>na</td></x<2.663<></td></x<4.92<></td></x<3.633<></td></x<1.17<></td></x<5.584<></td></x<1.141<>	na	na	na	na	na	na	na	5.434 <x<5.584< td=""><td>na</td><td>0.72<x<1.17< td=""><td>na</td><td>na</td><td>3.483<x<3.633< td=""><td>na</td><td>4.77<x<4.92< td=""><td>na</td><td>2.363<x<2.663< td=""><td>na</td><td>na</td><td>na</td></x<2.663<></td></x<4.92<></td></x<3.633<></td></x<1.17<></td></x<5.584<>	na	0.72 <x<1.17< td=""><td>na</td><td>na</td><td>3.483<x<3.633< td=""><td>na</td><td>4.77<x<4.92< td=""><td>na</td><td>2.363<x<2.663< td=""><td>na</td><td>na</td><td>na</td></x<2.663<></td></x<4.92<></td></x<3.633<></td></x<1.17<>	na	na	3.483 <x<3.633< td=""><td>na</td><td>4.77<x<4.92< td=""><td>na</td><td>2.363<x<2.663< td=""><td>na</td><td>na</td><td>na</td></x<2.663<></td></x<4.92<></td></x<3.633<>	na	4.77 <x<4.92< td=""><td>na</td><td>2.363<x<2.663< td=""><td>na</td><td>na</td><td>na</td></x<2.663<></td></x<4.92<>	na	2.363 <x<2.663< td=""><td>na</td><td>na</td><td>na</td></x<2.663<>	na	na	na
						1		1					F	POLYCHLOROBI	PHENYLS (PCE	3)							1							
PCB 28	mg/kg MS				na	<0.01	na	na	na	<0.01	na	na	na	na	na	na	na	<0.01	na	na	na	<0.01	<0.01	<0.01	<0.01	na	na	na	na	na
PCB 52 PCB 101	mg/kg MS				na na	<0.01 <0.01	na	na na	na	<0.01 <0.01	na	na	na	na	na	na na	na	<0.01 <0.01	na	na	na	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	na na	na na	na na	na	na na
PCB 101 PCB 118	mg/kg MS mg/kg MS				na na	<0.01	IId no	IId no	IId no	<0.01	na na	na na	IId no	na na	no.	IId no	na na	<0.01	IId no	na na	IId	<0.01	<0.01	<0.01	<0.01	IId no	IId no	na na	na na	Tid no
PCB 138	mg/kg MS				na na	<0.01	na na	na na	na	<0.01	na na	na na	na na	na na	na na	na na	na na	<0.01	na na	na na	na na	<0.01	<0.01	<0.01	<0.01	na na	na na	na na	na na	na na
PCB 153	mg/kg MS				na	<0.01	na	na	na	<0.01	na	na	na	na	na	na	na	<0.01	na	na	na	<0.01	<0.01	<0.01	<0.01	na	na	na na	na	na
PCB 180	mg/kg MS				na	<0.01	na	na	na	<0.01	na	na	na	na	na	na	na	<0.01	na	na	na	<0.01	<0.01	<0.01	<0.01	na	na	na	na	na
PCB totaux (7)	mg/kg MS	1	1 <c<10< td=""><td>10<c<50< td=""><td>na</td><td><0.07</td><td>na</td><td>na</td><td>na</td><td><0.07</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td><0.07</td><td>na</td><td>na</td><td>na</td><td><0.07</td><td><0.07</td><td><0.07</td><td><0.07</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td></c<50<></td></c<10<>	10 <c<50< td=""><td>na</td><td><0.07</td><td>na</td><td>na</td><td>na</td><td><0.07</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td><td><0.07</td><td>na</td><td>na</td><td>na</td><td><0.07</td><td><0.07</td><td><0.07</td><td><0.07</td><td>na</td><td>na</td><td>na</td><td>na</td><td>na</td></c<50<>	na	<0.07	na	na	na	<0.07	na	na	na	na	na	na	na	<0.07	na	na	na	<0.07	<0.07	<0.07	<0.07	na	na	na	na	na
														HYDROCARBU	RES TOTAUX								1							
fraction C10-C16	mg/kg MS				9.39	5.76	24.7	10.4	<4.00	2.75	6.04	3.15	14.2	6.16	12.1	13.8	18.4	101	78.5	2.78	14.9	1.25	0.43	na	11.4	17.6	37.5	50.4	31	33.4
fraction C16-C22	mg/kg MS				34	9.1	29.6	13	<4.00	7.52	6.87	7.83	9.47	4.04	15.5	13.8	22.5	193	132	13.9	20.1	10.1	4.15	na	14.3	29.9	47.8	156	60.2	87.9
fraction C22 - C30	mg/kg MS				74.5	11.2	34.2	17.1	<4.00	10.7	7.68	7.85	9.11	3.38	22.2	15	25.5	336	195	19.3	45.7	59.4	17.8	na	41	37.6	38.9	587	119	433
fraction C30 - C40	mg/kg MS				98.5	6.47	15.9	8.75	<4.00	4.87	4.38	4.75	4.96	2.09	26.6	6.83	15.1	202	114	11.2	27	124	35.6	na	110	16.2	17	441	73	393
hydrocarbures totaux C10-C40	mg/kg MS	<500	500 <c<2000< td=""><td>2000<c<10000< td=""><td>216</td><td>32.5</td><td>104</td><td>49.2</td><td><15.0</td><td>25.8</td><td>25</td><td>23.6</td><td>37.7</td><td>15.7</td><td>76.4</td><td>49.5</td><td>81.4</td><td>832</td><td>519</td><td>47.2</td><td>108</td><td>195</td><td>58</td><td>na</td><td>177</td><td>101</td><td>141</td><td>1230</td><td>284</td><td>948</td></c<10000<></td></c<2000<>	2000 <c<10000< td=""><td>216</td><td>32.5</td><td>104</td><td>49.2</td><td><15.0</td><td>25.8</td><td>25</td><td>23.6</td><td>37.7</td><td>15.7</td><td>76.4</td><td>49.5</td><td>81.4</td><td>832</td><td>519</td><td>47.2</td><td>108</td><td>195</td><td>58</td><td>na</td><td>177</td><td>101</td><td>141</td><td>1230</td><td>284</td><td>948</td></c<10000<>	216	32.5	104	49.2	<15.0	25.8	25	23.6	37.7	15.7	76.4	49.5	81.4	832	519	47.2	108	195	58	na	177	101	141	1230	284	948
					-																	•								

Tableau 18 : Résultats des analyses sur les échantillons – composés organiques (PM14.1 à PM20.1)

		Arrê	té du 11/01/	2007				
		Eaux des consommat	itinés à la ion humaine	Eaux brutes utilisées pour la production d'eau	Valeurs guide OMS	PZ1	PZ2	PZ3
Paramètre	Unité	Limite de qualité	Référence de qualité	Limite de qualité				
			META	UX				
arsenic	mg/l	0,01	-	0,1	0,01	<0.005	<0.005	<0.005
cadmium	mg/l	0,005	-	0,005	0,003	<0.005	<0.005	<0.005
chrome	mg/l	0,05	-	0,05	0,05	<0.005	<0.005	<0.005
cuivre	mg/l	2	1	-	2	0.04	0.01	0.02
nickel	mg/l	0,02	-	-	0,07	0.006	0.007	0.01
plomb	mg/l	0,01	-	0,05	0,01	<0.005	<0.005	<0.005
zinc	mg/l	-	-	5	-	0.03	<0.02	<0.02
mercure	μg/l	1	-	1	6	<0.20	<0.20	<0.20
		HYDROCARB	URES AROMA	TIQUES POLY	CYCLIQUES			
naphtalène	μg/l	-	-	-	-	0.01	<0.01	<0.01
acénaphtylène	μg/l	-	-	-	-	<0.01	<0.01	<0.01
acénaphtène	μg/l	-	-	-	1	<0.01	<0.01	<0.01
fluorène	μg/l	-	-	-	-	<0.01	<0.01	<0.01
anthracène	μg/l	-	-	-	-	<0.01	<0.01	0.03
fluoranthène	μg/l	-	-	-	-	0.01	<0.01	0.17
pyrène	μg/l	-	-	-	-	<0.01	<0.01	0.11
benzo(a)anthracène	μg/l	-	-	-	-	<0.01	<0.01	0.1
chrysène	μg/l	-	-	-	-	<0.01	<0.01	0.13
benzo(b)fluoranthène	μg/l	-	-	-	-	<0.01	<0.01	0.1
benzo(k)fluoranthène	μg/l	-	-	-	-	<0.01	<0.01	0.05
benzo(a)pyrène	μg/l	0,01	-	-	0,7	<0.01	<0.01	0.06
dibenzo(ah)anthracène	μg/l	-	-	-	•	<0.01	<0.01	0.01
indéno(1,2,3-cd)pyrène	μg/l	-	-	-	1	<0.01	<0.01	0.03
phénanthrène	μg/l	-	-	-	•	<0.01	<0.01	0.09
benzo(ghi)pérylène	μg/l	-	-	-	-	<0.01	<0.01	0.03
Somme des HAP (16) - EPA	μg/l	-	-	-	-	0.02 <x<0.16< td=""><td><0.16</td><td>0.91<x<0.95< td=""></x<0.95<></td></x<0.16<>	<0.16	0.91 <x<0.95< td=""></x<0.95<>
		COMP	OSES AROMA	TIQUES VOLAT	ILS			
benzène	μg/l	1	-	-	10	<0.50	<0.50	<0.50
toluène	μg/l	-	-	-	700	<1.00	<1.00	<1.00
éthylbenzène	μg/l	-	-	-	300	<1.00	<1.00	<1.00
orthoxylène	μg/l	-	-	-	-	<1.00	<1.00	<1.00
para- et métaxylène	μg/l	-	-	-	-	<1.00	<1.00	<1.00
		F	YDROCARBU	RES TOTAUX				
fraction C10-C16	mg/l	-	-	-	-	0.012	<0.008	<0.008
fraction C16-C22	mg/l	-	-	-	-	<0.008	<0.008	<0.008
fraction C22 - C30	mg/l	-	-	-	-	0.022	0.061	0.031
fraction C30 - C40	mg/l	-	-	-	-	<0.008	0.038	0.015
hydrocarbures totaux C10-C40	mg/l	-	-	1	-	0.048	0.111	0.055

Tableau 20 : Résultats des analyses chimiques en laboratoire sur les eaux souterraines 1/2

Dossier: NREP.E025- indice 1 - Novembre 2014

		Arrêt	é du 11/01/	2007				
		Eaux des consommati	tinés à la ion humaine	Eaux brutes utilisées pour la production d'eau	Valeurs guide OMS	PZ1	PZ2	PZ3
Paramètre	Unité	Limite de qualité	Référence de qualité	Limite de qualité				
		COMPOSE	S ORGANO H	ALOGENES VO	LATILS			
dichlorométhane	μg/l	-	-	-	20	<5.00	<5.00	<5.00
chloroforme	μg/l	-	-	-	300	<2.00	<2.00	<2.00
Tétrachlorure de carbone	μg/l				4	<1.00	<1.00	<1.00
trichloroéthylène	μg/l	-	-	-	20	<1.00	<1.00	<1.00
tétrachloroéthylène	μg/l	-	-	-	-	<1.00	<1.00	<1.00
1,1-dichloroéthane	μg/l				-	<2.00	<2.00	<2.00
1,2-dichloroéthane	μg/l	3	-	-	30	<1.00	<1.00	<1.00
1,1,1-trichloroéthane	μg/l	-	-	-	-	<2.00	<2.00	<2.00
1,1,2-trichloroéthane	μg/l				-	<5.00	<5.00	<5.00
cis-1,2-dichloroéthène	μg/l	-	-	-	-	<2.00	<2.00	<2.00
trans 1,2-dichloroéthylène	μg/l	-	-	-	-	<2.00	<2.00	<2.00
chlorure de vinyle	μg/l	0,5	-	-	0,3	<0.50	<0.50	<0.50
1,1-dichloroéthène	μg/l	-	-	-	50	<2.00	<2.00	<2.00
Bromochlorométhane	μg/l	-	-	-	-	<5.00	<5.00	<5.00
Dibromométhane	μg/l	-	-	-	-	<5.00	<5.00	<5.00
Bromodichlorométhane	μg/l	-	-	-	60	<5.00	<5.00	<5.00
Dibromochlorométhane	μg/l	-	-	-	100	<2.00	<2.00	<2.00
1,2-Dibromoéthane	μg/l	-	-	-	0.4	<1.00	<1.00	<1.00
Bromoforme	μg/l	-	-	-	100	<5.00	<5.00	<5.00
Somme des COHV	μg/l	-	-	-	-	<49.5	<49.5	<49.5
	•	POI	YCHLOROBIE	HENYLS (PCB)		•	
PCB 28	μg/l	-	-	-	-	<0.01	<0.01	<0.01
PCB 52	μg/l	-	-	-	-	<0.01	<0.01	<0.01
PCB 101	μg/l	-	-	-	-	<0.01	<0.01	<0.01
PCB 118	μg/l	-	-	-	-	<0.01	<0.01	<0.01
PCB 138	μg/l	-	-	-	-	<0.01	<0.01	<0.01
PCB 153	μg/l	-	-	-	-	<0.01	<0.01	<0.01
PCB 180	μg/l	-	-	-	-	<0.01	<0.01	<0.01
SOMME PCB (7)	μg/l	-	-	-	-	<0.07	<0.07	<0.07

Tableau 21 : Résultats des analyses chimiques en laboratoire sur les eaux souterraines 2/2

Dossier: NREP.E025- indice 1 - Novembre 2014

Unithologie	Description		ISDI	ISDND	ISDD	PM1.2	PM10.2	ST16.2	ST18.1	ST21.1	ST28.1
Unitrologie Profondeur 1,00 - 1,30 0,40 - 0,30 0,50 - 1,00 0,00 - 0,50 0,00 - 0,00 0				19/12/2002 et	19/12/2002 et	légèrement argileux brun avec nodules		limono- sableux	limono- sableux	schisteux	Remblais schisteux noirs
Statistics sche % massinup				criteres FNADE	criteres FNADE						
Control	Profondeur										0,00 - 1,00
Colforométhane											92.9
Chloromethane	COT**	mg/kg MS						50700	46900	179000	416000
Dechloromethane			CO	MPOSES OR	GANO HALO						0.00
Chlorure de Vinvide											<2.00 <0.10
1.1 Dichloroethene											<0.10
Trans-1_2-dichloroethylène	· · · · · · · · · · · · · · · · · · ·										<0.02
Si 1,20 inclinoréthylène mg/kg MS											<0.10
Chloroéthane	,										<0.10
Trichiorofiluorométhane	· · · · · · · · · · · · · · · · · · ·										<2.00
Chloroforme (trichloromethane)											<0.20
Tetrachlorore the carbone											<0.10
1,1-dichloroéthane	, ,										<0.05
1,2 dichloroéthane						<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,12-trichloroéthane	1,2-dichloroéthane	mg/kg MS				<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Somme des Trichloroéthanes mg/kg MS	1,1,1-trichloroéthane	mg/kg MS				<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,1,1,2 Tétrachioroéthane mg/kg MS	1,1,2-trichloroéthane	mg/kg MS				<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,2,2-tétrachloroéthane	Somme des Trichloroéthanes	mg/kg MS				<0.30	<0.30				<0.30
Somme des Tétrachloroéthanes mg/kg MS											<0.10
Trichloroethylene	. , ,	, ,									<0.20
Tetrachloroethylène mg/kg MS											<0.30
2,2-Dichloropropane	· · · · · · · · · · · · · · · · · · ·										<0.05
1,2-Dichloropropane											<0.05
1,3-Dichloropropane mg/kg MS											<0.20
1,2,3-trichloropropane mg/kg MS											<0.20 <0.10
	· · ·										<2.00
dis-1,3-Dichloropropène mg/kg MS <0.20											<0.10
trans-1,3-Dichloropropène mg/kg MS <.0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.											<0.10
Somme des 1,3-Dichloropropènes mg/kg MS	· · ·										<0.20
Bromochlorométhane											<0.40
Dibromométhane											<0.20
1,2-Dibromoéthane mg/kg MS <0.05											<0.20
Bromoforme (tribromométhane) mg/kg MS						< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Bromodichlorométhane		mg/kg MS				<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dibromo-3-chloropropane mg/kg MS <0.20	Bromodichlorométhane	mg/kg MS				<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
CHLOROBENZENE	Dibromochlorométhane	mg/kg MS				<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
CHLOROBENZENE Chlorobenzène mg/kg MS	1,2-Dibromo-3-chloropropane	mg/kg MS				<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chlorobenzène mg/kg MS < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 <t< td=""><td>Bromobenzène</td><td>mg/kg MS</td><td></td><td></td><td></td><td></td><td><0.10</td><td><0.10</td><td><0.10</td><td><0.10</td><td><0.10</td></t<>	Bromobenzène	mg/kg MS					<0.10	<0.10	<0.10	<0.10	<0.10
1,2-dichlorobenzène mg/kg MS <0.10				С	HLOROBENZ						
1,3-dichlorobenzène mg/kg MS <0.10											<0.10
1,4-Dichlorobenzène mg/kg MS < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20											<0.10
Somme des Dichlorobenzènes mg/kg MS <0.30 <0.30 <0.30 <0.30 <0.30 <0.30 <0.30 <0.30 <0.30 <0.30 <0.30 <0.30 <0.30 <0.30 <0.30 <0.30 <0.30 <0.30 <0.30 <0.30 <0.30 <0.30 <0.30 <0.30 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.60 <0.60 <0.60 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><0.10</td></t<>											<0.10
1,2,3-Trichlorobenzène mg/kg MS <0.20											<0.10
1,2,4-Trichlorobenzène mg/kg MS <0.20		, ,									<0.30
1,3,5-Trichlorobenzène mg/kg MS <0.20											<0.20 <0.20
Somme des Trichlorobenzènes mg/kg MS < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 < 0.60 </td <td></td> <td><0.20</td>											<0.20
POLYCHLOROBIPHENYLS (PCB) PCB 28 mg/kg MS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01											<0.20
PCB 28 mg/kg MS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.0	Somme des Trichlorobenzenes	HIG/KG IVIS		POLYC	HLOROBIPHENY		<0.00	<0.00	<0.00	<0.00	<0.00
PCB 52 mg/kg MS < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.0	PCB 28	mg/kg MS					<0.01	<0.01	<0.01	<0.01	<0.01
PCB 101 mg/kg MS < 0.01 <0.01 <0.01 <0.01 <0.01 <0.01											<0.01
	PCB 101										<0.01
111g/kg Wi3	PCB 118	mg/kg MS				<0.01	<0.01	0.01	<0.01	<0.01	<0.01
PCB 138 mg/kg MS < <0.01 <0.01 0.02 <0.01 <0.01	PCB 138					<0.01	<0.01	0.02	<0.01	<0.01	<0.01
PCB 153 mg/kg MS <0.01 <0.01 0.02 <0.01 <0.01	PCB 153					<0.01	<0.01	0.02	<0.01	<0.01	<0.01
PCB 180 mg/kg MS <	PCB 180	mg/kg MS				<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
PCB totaux (7) mg/kg MS 1 1 1 <c<10 0.05<br="" 0.07="" 10<c<50="" <=""></c<10> < 0.07 < 0.07 < 0.07 < 0.07	PCB totaux (7)	mg/kg MS	1	1 <c<10< td=""><td>10<c<50< td=""><td><0.07</td><td><0.07</td><td>0.05<x<0.09< td=""><td><0.07</td><td><0.07</td><td><0.07</td></x<0.09<></td></c<50<></td></c<10<>	10 <c<50< td=""><td><0.07</td><td><0.07</td><td>0.05<x<0.09< td=""><td><0.07</td><td><0.07</td><td><0.07</td></x<0.09<></td></c<50<>	<0.07	<0.07	0.05 <x<0.09< td=""><td><0.07</td><td><0.07</td><td><0.07</td></x<0.09<>	<0.07	<0.07	<0.07

Tableau 22 : Résultats des analyses chimiques multiéléments en laboratoire 1/2

Dossier: NREP.E025- indice 1 - Novembre 2014

Annexe 3. Investigations initiales – Coupes techniques

Cette annexe contient 9 pages.

Links Landers D. and L. C. and L. and L. C. and L. and L. C. and L

Figure 19 : Plan d'implantation des sondages

E160 version 2 du 03/01/2011

Dossier : NREP.E025 – indice 1 – Novembre 2014 Page 52/88

COUPES DE PUITS OU SONDAGES

Chantier: Rue des Ragonieux - Loos en Gohelle

Client : Ville de Loos en Gohelle

Dossier: NREP.E025

Ech. 1/50° Date: 01/10/14 sondage PM5 Prof. Résultats d'essais ou observations **Description des sols** en m. Prof NGF Terre végétale 0.20 Remblais limoneux compact marron avec présence de craie 0.40 Limon brun 1 2 Craie (plus blanche en profondeur) Tracto-Pelle 0 0 0 3.00 3 Nappe: pas d'eau à la prof. reconnue (à date du sondage) | Observations : /

Ech. 1/5							Date : 01/10/14
Prof. en m.	matériel	Nappe	sondage PN	l 6 NGF	Description des sols	Echant.	Résultats d'essais ou observations
			R R R 0.50		Terre végétale + remblais (présence de briques et craies)	1	
1 –						2	
. –						3	
•			R R R		Remblais schisteux noirs	3	
2 –	Pelle						
	Tracto-Pelle					4	
3 –			<u> </u>				
4 –							
 Nappe:	pas	d'e	au à la prof. reconnue	(à date d	u sondage) Observations : /		

Chantier: Rue des Ragonieux - Loos en Gohelle

Client : Ville de Loos en Gohelle

Dossier: NREP.E025

Ech.Prof: / date travaux: 02/10/14

Ech.Pr	rof: /						date tra	ıvaı	ux: 02/10/14
Prof. (m)	Outils	Tubage	Etages	COUPE Prof	NGF	Description des sols		Echant.	Résultats d'essais ou observations
0.5 -						Remblais limono sableux marron (présence de briques)		1 r	
1.5-	Tarière Ø89mm			1.00		Craie altérée		2 r	
	Tarière					Remblais limoneux (présence de briques, cailloux et craie)		3 r	
2.5.5 1.07/2017 2.07/2017				R B B B B B B B B B		Remblais sableux (présence de briques, cailloux, verre)		4 r	
3 -				# B B B B B B B B B B B B B B B B B B B		[Arrêt du sondage]			

Sondeuse: SOCOMA

Observations: /

Chantier: Rue des Ragonieux - Loos en Gohelle

Client : Ville de Loos en Gohelle

Dossier: NREP.E025

Ech.Prof: / date travaux: 02/10/14

Ech.Pr	OT: /						date trav	vau	ıx: 02/10/14
Prof. (m)	Outils	Tubage	Etages	COUPE Prof	NGF	Description des sols		Echant.	Résultats d'essais ou observations
0.5 –	-					Remblais limono schisteux noirâtres		1r	
1.5 -	Tarière Ø89mm			# B B B B B B B B B B B B B B B B B B B				2 r	
2 –						Remblais sablo schisteux noirâtres		3 r	
2.5								4 r	
3 -				3.00		[Arrêt du sondage]			

Sondeuse: SOCOMA

Observations: /

Chantier: Rue des Ragonieux - Loos en Gohelle

Client : Ville de Loos en Gohelle

Dossier: NREP.E025

Ech.Prof: / date travaux: 02/10/14

Ech.Pr	ot:/						date tra	ıvaı	ıx: 02/10/14
Prof. (m)	Outils	Tubage	Etages	COUPE Prof	NGF	Description des sols		Echant.	Résultats d'essais ou observations
0.5 -			X X X X X X X					1 r	
1 -	_		*/					2 r	
1.5 -	Tarière Ø89mm		*/ */ */ */			Remblais schisteux noirs (présence de cailloux et briques)			
2.5			X X					3 r	
2.5	-		*/***/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/						
3 –			*/*/*/	# # # # # # # # # # # # # # # # # # #		[Arrêt du sondage]	-	4 r	

Sondeuse: SOCOMA

Observations: /

SONDAGE DESTRUCTIF ST28

Chantier: Rue des Ragonieux - Loos en Gohelle

Client : Ville de Loos en Gohelle

Dossier: NREP.E025

annexe:

Ech.Prof: / date travaux: 02/10/14

Ech.Pr	OI: /						date tra	avai	ux: 02/10/14
Prof. (m)	Outils	Tubage	Etages	COUPE	f NGF	Description des sols		Echant.	Résultats d'essais ou observations
0.5 -						Remblais schisteux noirs (présence de briques)		1 r	
du 17705/2011]	Tarière Ø89mm			R B B B B B B B B B		Remblais limoneux marron Remblais schisteux noirs (présence de briques)		21	
Logiciel SONDAGE32 - Version 3.50 du 25-04-2014 [DQ.E137 - V.1 du 17/05/2011] 7				2.00		Sable + schiste grisâtre [Arrêt du sondage]		31	

Sondeuse: SOCOMA

Observations: /

Chantier: Rue des Ragonieux - Loos en Gohelle

Client : Ville de Loos en Gohelle

Dossier: NREP.E025

Ech.Prof: / date travaux: 03/10/14

Ech.Pr	of:/						date tra	avau	ıx: 03/10/14
Prof. (m)	Outils	Tubage	Etages	COUPE Prof	NGF	Description des sols		Echant.	Résultats d'essais ou observations
0.5 –								1 r	
1 -	_							2 r	
1.5 –	Tarière Ø89mm					Remblais limono sableux marron gris (présence de verre, cailloux et craie)			
. [DQ.E137 - V.1 du 17/05/2 7	_							3 r	
Logiciel SONDAGE32 - Version 3.50 du 25-04-2014 [DQ.E137 - V.1 du 17/05/2011] 7	_								
Cogiciel SON				3.00		[Arrêt du sondage]			

Sondeuse: SOCOMA

Observations: /

Chantier: Rue des Ragonieux - Loos en Gohelle

Client : Ville de Loos en Gohelle

Dossier: NREP.E025

Ech.Prof: / date travaux: 03/10/14

Ech.Pr	of:/						date tra	vau	ıx: 03/10/14
Prof. (m)	Outils	Tubage	Etages	COUPE Prof	NGF	Description des sols		Echant.	Résultats d'essais ou observations
0.5 -						Remblais limono sableux (présence de schiste, briques et cailloux)		1r	
1.5 -	Tarière Ø89mm							2 r	
2 2.5 - 1.07/60/21				2.75		Limon sablo schisteux + craie altérée		3 r	
3 –				3.00		Craie [Arrêt du sondage]		4 r	

Sondeuse: SOCOMA

Observations: /

Chantier : LOOS-EN-GOHELLE (62) Aménagement de la ZAC de l'Ouest

Client : VILLE DE LOOS-EN-GOHELLE

Dossier: NBE2.E0206

Coordonnées du sondage:

X:629972.6 Y:305769.8 Z:67.73 (NGF)

date travaux: 25.09.14 Ech.Prof: 1/200° Tubage Prof. Piezomètre équipement Piezo COUPE Description des sols Prof NGF et observations (m) capot métallique en tête sur massif de scellement. Remblais 2 2.50 65.23 bouchon élanche avec Bouchon argile - sobranite de 2.5 à 3.5 m. 3 4 gravillons drainants à partir de 3.50 m 5 6 début crépine à 3 m. 7 8 11 12 13 14 15 16 17 18 19 Tricone Ø 20 21 Craie blanche 22 23 - DQ E137 - V 1 du 17/05/2011 24 25 26 27 28 29 30 - Version 3.50 du 25-04-2014 31 32 33 34 _¥35 ₹ 15.10 14 36 37 tube piezo PVC lisse diamètre Int. 80 mm longueur 40 m. 38 39 [Arrêt du sondage] 40 40.00 27.73 bouchon à la base

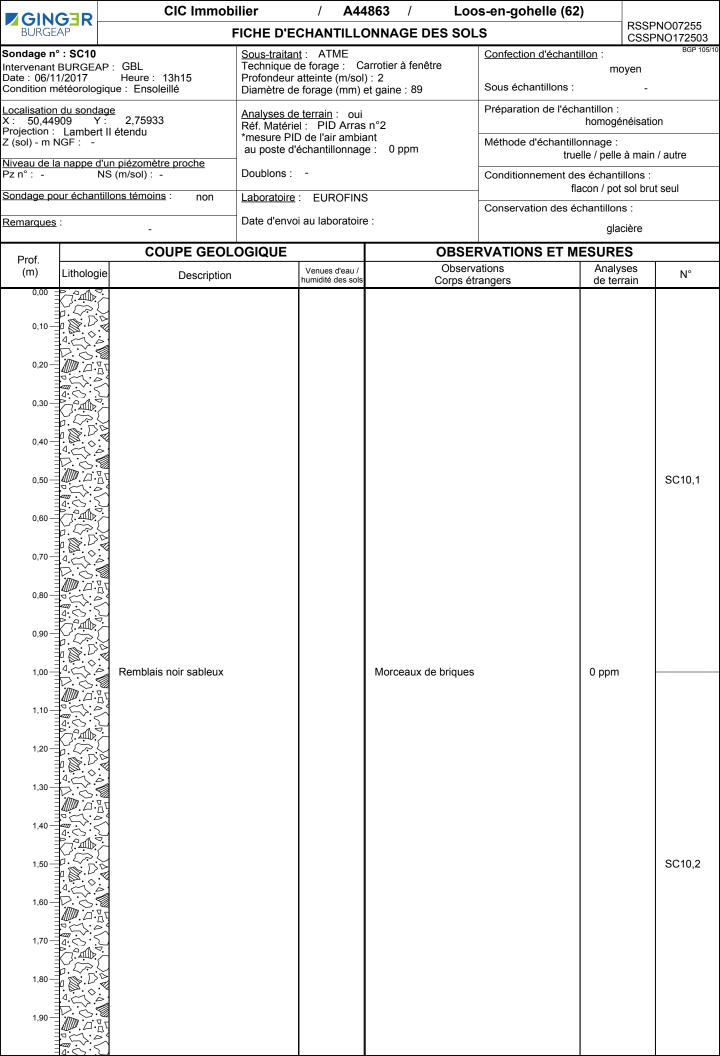
Sondeuse: EMCI 700 Observations: /

Niveau d'eau à 35.35 m. niveau relevé le 15.10.14

Annexe 4. Fiches d'échantillonnage des sols – BURGEAP, novembre 2017

Cette annexe contient 21 pages.

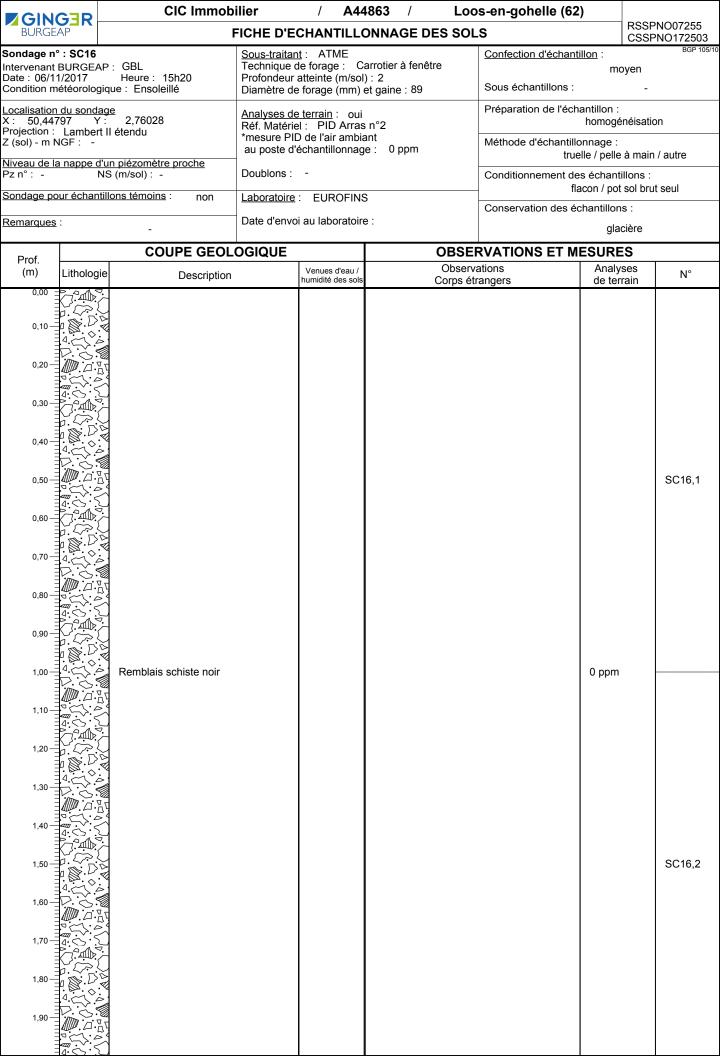

GINIC	23D	CIC Immob	ilier	/ A4 4	4863 /	Loo	s-en-gohelle (62)		
GIN (BURGE/	AP	F	FICHE D'E	CHANTILL	ONNAGE DES	SOL	S			NO07255 NO172503
Sondage n° Intervenant Date: 06/11	BURGE <i>A</i> 1/2017	NP : GBL Heure : 10h00 gique : Ensoleillé	Profondeur	t: ATME le forage: C atteinte (m/sol forage (mm)	arrotier à fenêtre) : 2 et gaine : 89		Confection d'échanti		yen -	BGP 105/10
Localisation X: 50,451	du sonda	age : 2,75548	Analyses de	terrain : oui			Préparation de l'éch	antillon : homogé	néisatio	on
Projection : Z (sol) - m N	IGF: -	t II etendu <u>l'un piézomètre proche</u>	*mesure PID) de l'air ambia échantillonnag	ant		Méthode d'échantillonnage : truelle / pelle à main / autre			
Pz n° : -		NS (m/sol) : -	Doublons :	-			Conditionnement de	s échant acon / pot		t coul
Sondage po	ur échan	tillons témoins : non	Laboratoire	: EUROFINS	3		Conservation des éc	<u> </u>		Seui
Remarques	:	-		i au laboratoir					cière	
Prof.		COUPE GEOL	OGIQUE	T			RVATIONS ET M			
(m)	Litholog	ie Description		Venues d'eau / humidité des sols		bserva ps étr	ations angers	Analy de ter		N°
0,00 = 0,00 = 0,10 = 0,20 = 0,30 = 0,40 = 0,50 = 0,50 = 0,70 = 0,80 = 0,90 = 0,		Remblais schiste noir						0 ppm		SC1,1
1,10		Limon marron avec more craie	eaux de							SC1,2
1,50 — 1,60 — 1,70 — 1,80 —		L Craie								SC1,3


GING	CID	CIC Immobi	ilier	/ A4 4	1863 /	Loo	s-en-gohelle (62)		
BURGE/	AP	F	FICHE D'E	CHANTILL	ONNAGE DES	SOL	S			NO07255 NO172503
Sondage n° Intervenant I Date: 06/11 Condition m	BURGE/ 1/2017	NP : GBL Heure : 10h30 gique : Ensoleillé	Profondeur	t: ATME de forage: C atteinte (m/sol e forage (mm)			Confection d'échanti		yen -	BGP 105/10
Localisation X: 50,450 Projection:)57 Y	': 2,75768	Réf. Matérie	<u>terrain</u> : oui	s n°2		Préparation de l'éch	antillon : homogé	néisatio	n
Z (sol) - m N Niveau de la	IGF: -	l'un piézomètre proche	au poste d'e	O de l'air ambia échantillonnag			Méthode d'échantillo true	onnage : elle / pelle	à main	/ autre
Pz n°: -	l	NS (m/sol) : -	Doublons :	-			Conditionnement de	s échant acon / pot		t seul
Sondage po	ur échan	tillons témoins : non	Laboratoire	: EUROFINS	8		Conservation des éc	<u> </u>		
Remarques	:	-		i au laboratoir					cière	
Prof.		COUPE GEOL	OGIQUE	ı			RVATIONS ET M			
(m)	Litholog	ie Description		Venues d'eau / humidité des sols		bserva rps étr	ations angers	Analy de ter		N°
0,00 = 0,10 = 0,20 = 0,30 = 0,40 = 0,50 = 0,70 = 0,80 = 0,90 = 0,		Remblais schiste noir ave	ec cailloux					0 ppm		SC2,1
1,10		Limon marron avec more craie	eaux de							SC2,2
1,50 — 1,60 — 1,70 — 1,80 —		Craie								SC2,3

Z GIN(23D	CIC Immob	ilier	/ A4 4	1863 / Lo	oos-en-gohelle (6	2)			
BURGE	AP	i	FICHE D'E	CHANTILLO	ONNAGE DES SO	DLS			NO07255 NO172503	
Sondage n° Intervenant I Date : 06/11 Condition me	BURGEA 1/2017	NP: GBL Heure: 11h00 gique: Ensoleillé	Profondeur	at: ATME de forage: C atteinte (m/sol e forage (mm)	arrotier à fenêtre) : 2 et gaine : 89	Confection d'échar	mo	oyen -	BGP 105/1	
Localisation X: 50,449 Projection:	184 Y	2,75878	Réf. Matérie	<u>e terrain</u> : oui el : PID Arras		Préparation de l'éc	hantillon : homogé	néisatio	on	
Z (sol) - m N	IGF: -	l'un piézomètre proche		O de l'air ambia échantillonnag		Méthode d'échanti tru		onnage : elle / pelle à main / autre		
Pz n°: -	1	NS (m/sol) : -	Doublons :	-		Conditionnement of	es échant lacon / pot		t coul	
Sondage po	ur échan	tillons témoins : non	Laboratoire	: EUROFINS	6	Conservation des			- Seui	
Remarques	:	-	Date d'envo	i au laboratoir	e:			cière		
Prof.		COUPE GEOL	OGIQUE	.		ERVATIONS ET I				
(m)	Litholog	ie Description		Venues d'eau / humidité des sols		rvations étrangers	Analy de ter		N°	
0,00 = 0,10 = 0,20 = 0,30 = 0,40 = 0,50 = 0,60 = 0,70 = 0,80 = 0,90 = 0,		Remblais schiste noir av passage sableux	ec		Morceaux de brique	98	— 0 ppm		SC3,1	
1,10 — 1,20 — 1,30 — 1,40 —					Cailloux en bloc gri	s				
1,60 —		Remblais schiste noir av quelques morceaux de c							SC3,2	

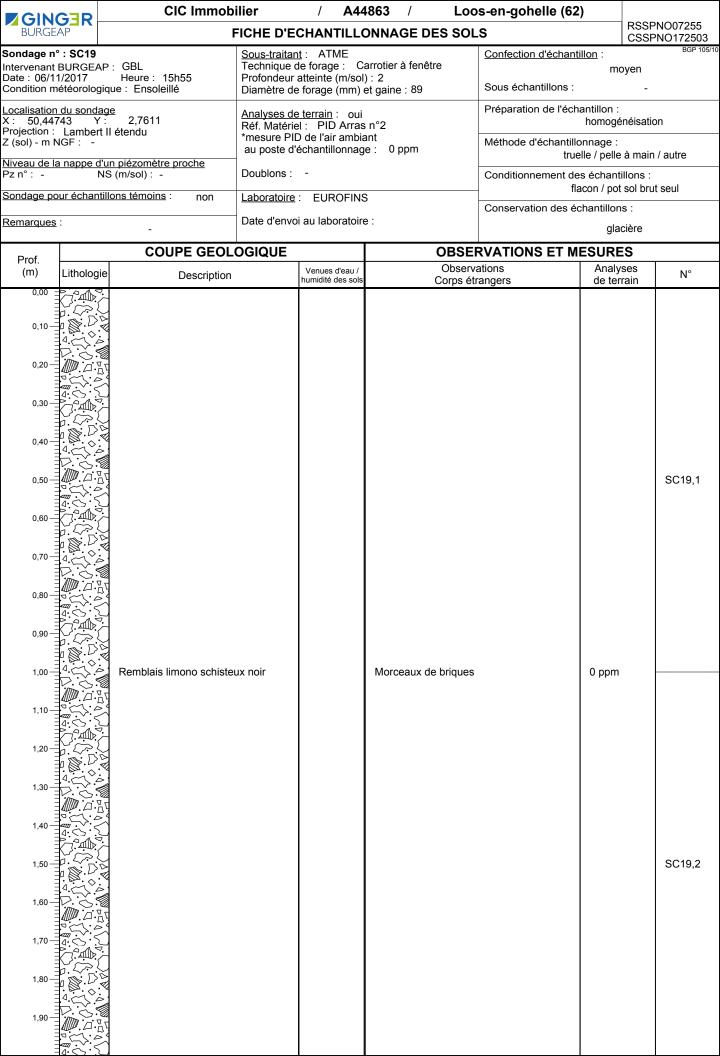
Z GIN(CID	CIC Immob	ilier	/ A4 4	4863 / Lo	oos-en-gohelle (62	2)				
BURGE	AP AP	i	FICHE D'E	CHANTILL	ONNAGE DES SO	DLS			NO07255 NO172503		
Sondage n° Intervenant Date: 06/11	BURGEA	NP:GBL Heure:10h45	Sous-traitan Technique d Profondeur	<u>t</u> : ATME le forage: C atteinte (m/sol	arrotier à fenêtre	Confection d'échant		yen	BGP 105/10		
		gique : Ensoleillé	Diamètre de	forage (mm)	et gaine : 89	Sous échantillons :		-			
Localisation X: 50,449 Projection:	95 Y Lamber	ž. 2,7591	Réf. Matérie	<u>terrain</u> : oui l: PID Arras de l'air ambia	s n°2	Préparation de l'éch	homogé	néisatio	n		
Z (sol) - m N		l'un piézomètre proche	au poste d'e	échantillonnag	je: 0 ppm		Méthode d'échantillonnage : truelle / pelle à main / autre				
Pz n°: -	I	NS (m/sol) : -	Doublons :	-		Conditionnement de	es échanti acon / pot		t seul		
Sondage po	ur échan	tillons témoins : non	Laboratoire	: EUROFINS	3	Conservation des é					
Remarques	:	Refus à 1,5 m	Date d'envo	i au laboratoir	e:		glad	cière			
Prof.		COUPE GEOL	OGIQUE	Γ		ERVATIONS ET M		Analyses de terrain			
(m)	Litholog	Description		Venues d'eau / humidité des sols		rvations étrangers			N°		
0,10		Remblais schiste noir							SC4,1		
0,50	D. 0 4 5				Brique rouge		0 ppm				
1,10 — 1,20 — 1,30 — 1,40 — 1,50 — 1,60 — 1,70 — 1,80 — 1,90 —		Remblais schiste noir							SC4,2		

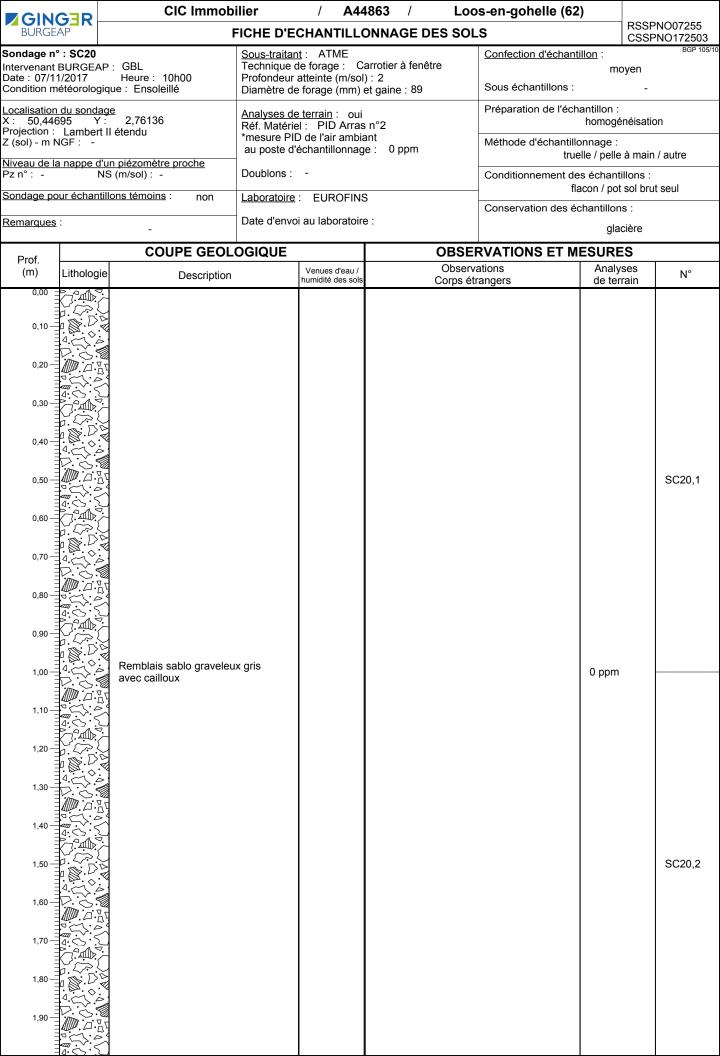
CINIC	CD	CIC Immob	ilier	/ A4 4	1863 /	Loo	s-en-gohelle (62)		
GIN (BURGE	AP	F	FICHE D'E	CHANTILLO	ONNAGE DES	S SOL	S		RSSP	NO07255 NO172503
Sondage n°		- 001	Sous-traitan	t: ATME	ti > f\$t		Confection d'échant			BGP 105/1
Intervenant I Date : 06/11 Condition me	1/2017	AP : GBL Heure : 11h25 gique : Ensoleillé	Profondeur	atteinte (m/sole forage (mm)	arrotier à fenêtre) : 2 et gaine : 89		Sous échantillons :	mo	yen -	
Localisation X: 50,449 Projection:	946 Y Lambei	′ : 2,75924	Réf. Matérie	e terrain : oui	s n°2		Préparation de l'éch	homogé	néisatio	n
Z (sol) - m N	IGF: -	l'un piézomètre proche	*mesure PID de l'air ambiant au poste d'échantillonnage : 0 ppm			Méthode d'échantillonnage : truelle / pelle à main / autre				
Pz n°: -		NS (m/sol) : -	Doublons :	-			Conditionnement de	s échant acon / pot		t seul
Sondage po	ur échan	tillons témoins : non	Laboratoire	: EUROFINS	8		Conservation des éc			
Remarques	:	-		i au laboratoir					cière	
Prof.		COUPE GEOL	OGIQUE	1			RVATIONS ET M			
(m)	Litholog	ie Description		Venues d'eau / humidité des sols		Observa orps étr		Analy de ter		N°
0,00 = 0,10 = 0,20 = 0,30 = 0,40 = 0,50 = 0,60 = 0,70 = 0,80 = 0,90 = 0,		Remblais schiste noir avi								SC6,1
1,00 — 1,10 — 1,20 — 1,30 — 1,40 — 1,50 — 1,60 — 1,70 — 1,80 — 1,90 —		Reliiblas scriiste iioli avi	ec camoux					0 ppm		SC6,2


CIN	CID	CIC Immob	ilier	/ A4 4	1863 /	Loo	s-en-gohelle (62)		
GIN (BURGE/	AP	i	FICHE D'E	CHANTILL	LONNAGE DES SOLS				RSSPNO07255 CSSPNO172503	
Sondage n° Intervenant Date : 06/11 Condition m	BURGEA 1/2017	P: GBL Heure: 13h30 ique: Ensoleillé	Profondeur	at: ATME de forage: C atteinte (m/sol e forage (mm)	arrotier à fenêtre) : 2 et gaine : 89		Confection d'échanti		yen -	BGP 105/10
Localisation X: 50,448 Projection:	372 Y	: 2,75959	Réf. Matérie	e terrain : oui			Préparation de l'éch	antillon : homogé	néisatio	on
Z (sol) - m N	NGF: -	'un piézomètre proche	au poste d'	O de l'air ambia échantillonnag	e: 0 ppm		Méthode d'échantillonnage : truelle / pelle à main / autre			
Pz n°: -	1	NS (m/sol) : -	Doublons :	-			Conditionnement de	s échant acon / pot		t seul
Sondage po	our échan	tillons témoins : non		: EUROFINS			Conservation des éc			
Remarques	:	-		i au laboratoir					cière	
Prof.		COUPE GEOL	OGIQUE	ı			RVATIONS ET M			
(m)	Litholog	Description		Venues d'eau / humidité des sols		bserva rps étr	ations angers	Analy de ter		N°
0,10		Remblais schiste noir avo	ec cailloux							SC11,1
0,60	A	Sable noir						O ppm		SC11,2
1,00 — 1,10 — 1,20 — 1,30 — 1,40 — 1,50 — 1,60 — 1,70 — 1,80 —		Remblais schiste noir ave	ec cailloux					0 ppm		SC11,3

GIN	CID	CIC Immob	ilier	/ A4 4	1863 /	Loo	s-en-gohelle (62)		
BURGE	AP	i	FICHE D'E	CHANTILL						NO07255 NO172503
Sondage no Intervenant Date: 06/17 Condition m	BURGEA 1/2017	P: GBL Heure: 14h00 ique: Ensoleillé	Profondeur	t: ATME de forage: C atteinte (m/sol e forage (mm)		e	Confection d'échant Sous échantillons :		oyen -	BGP 105/1
Localisation X: 50,448 Projection:	364 Y	2,75929	Réf. Matérie	<u>terrain</u> : oui			Préparation de l'éch	antillon : homogé	enéisatio	on
Z (sol) - m N	IGF: -	'un piézomètre proche	au poste d'e	O de l'air ambia échantillonnag			Méthode d'échantillo true	onnage : elle / pelle	à main	/ autre
Pz n°: -	1	NS (m/sol) : -	Doublons :	-			Conditionnement de	s échant acon / pot		t seul
Sondage po	ur échan	tillons témoins : non	Laboratoire	: EUROFINS	3		Conservation des éc			
Remarques	:	-		i au laboratoir					cière	
Prof.		COUPE GEOL	OGIQUE	I		OBSEF Observa	RVATIONS ET M			
(m)	Litholog	e Description		Venues d'eau / humidité des sols	(Corps étr		Analy de ter		N°
0,10		Remblais limoneux noir ravec cailloux	marron							SC12,1
0,60		Remblais noir			Morceaux de	briques				SC12,2
1,00 — 1,10 — 1,20 — 1,30 — 1,40 — 1,50 — 1,60 — 1,70 — 1,80 —		Remblais schiste sableux	c noir					0 ppm		SC12,3
1,90										

CIN	CID	CIC Immob	ilier	/ A4 4	1863 /	Loo	s-en-gohelle (62)		
GIN (BURGE/	AP	F	FICHE D'E	CHANTILL	ONNAGE D	ES SOL	S			NO07255 NO172503
Sondage n° Intervenant Date : 06/11 Condition m	BURGEA 1/2017	P: GBL Heure: 14h20 ique: Ensoleillé	Profondeur	t: ATME de forage: C atteinte (m/sol e forage (mm)	arrotier à fenêt) : 2 et gaine : 89	re	Confection d'échant Sous échantillons :		oyen -	BGP 105/1
Localisation X: 50,448 Projection:	317 Y	2,75866	Réf. Matérie	<u>terrain</u> : oui	s n°2		Préparation de l'éch	antillon : homogé	néisatio	งท
Z (sol) - m N	IGF: -	'un piézomètre proche	au poste d'e	O de l'air ambia échantillonnag			Méthode d'échantillo true	onnage : elle / pelle	à main	/ autre
Pz n°: -	1	NS (m/sol) : -	Doublons :	-			Conditionnement de	s échant acon / pot		t seul
Sondage po	ur échan	tillons témoins : non	Laboratoire	: EUROFINS	3		Conservation des éd			
Remarques	:	-		i au laboratoir	e :				cière	
Prof.		COUPE GEOL	OGIQUE	I		OBSEF	RVATIONS ET M			
(m)	Litholog	Description		Venues d'eau / humidité des sols		Corps étr		Analy de ter		N°
0,00 = 0,10 = 0,20 = 0,30 = 0,40 = 0,50 = 0,60 = 0,70 = 0,80 = 0,80 = 0,90 = 0,		Remblais limono schister avec cailloux	ux noir							SC13,1
1,00 — 1,10 — 1,20 — 1,30 — 1,40 — 1,50 — 1,60 — 1,70 — 1,80 —		Sremblais gris avec schis et gris	ste rouge					0 ppm		SC13,2


CINC	23D	CIC Immob	ilier	/ A4	1863 /	Loo	s-en-gohelle (62)		
GIN (BURGE	AP AP	i	FICHE D'E	CHANTILL	ONNAGE DE	S SOL	RS CS			NO07255 NO172503
Sondage n°			Sous-traitan	t: ATME			Confection d'échanti	illon :	0001	BGP 105/10
Intervenant I Date : 06/11 Condition me	1/2017	.P : GBL Heure : 14h50 jique : Ensoleillé	Profondeur	le forage : C atteinte (m/sol e forage (mm)	arrotier à fenêtre) : 2 et gaine : 89)	Sous échantillons :	mo	oyen -	
Localisation X: 50,448 Projection:	28 Y Lamber	2,75985	Réf. Matérie	e terrain : oui el : PID Arras de l'air ambi	s n°2		Préparation de l'éch	homogé	néisatio	n
Z (sol) - m N Niveau de la	IGF: -	'un piézomètre proche	au poste d'e	échantillonnag			Méthode d'échantillo true	onnage : elle / pelle	à main	/ autre
Pz n° : -		NS (m/sol) : -	Doublons :	-			Conditionnement de	s échant acon / pot		t seul
Sondage po	<u>ur échan</u>	tillons témoins : non	Laboratoire	: EUROFINS	3		Conservation des éc			
Remarques	:	-		i au laboratoir					acière	
Prof.	COUPE GEOLOGI			ı			RVATIONS ET M			
(m)	Litholog	Description		Venues d'eau / humidité des sols		Observa Corps étr		Analy de ter		N°
0,00 = 0,10 = 0,20 = 0,30 = 0,40 = 0,50 = 0,70 = 0,80 = 0,90 = 0,		Remblais schiste noir et avec cailloux	rouge					0 ppm		SC14,1
1,00 — 1,10 — 1,20 — 1,30 — 1,40 — 1,50 — 1,60 — 1,70 — 1,80 — 1,90 —		Remblais noir et gris ave	c cailloux							SC14,2


CINIC	23D	CIC Immob	ilier	/ A4 4	1863 /	Loo	s-en-gohelle (62)		
GIN (BURGE	AP	F	FICHE D'E	CHANTILLO	ONNAGE DES	SSOL	S		RSSP	NO07255 NO172503
Sondage n° Intervenant I Date : 06/11 Condition me	BURGE/ 1/2017	NP : GBL Heure : 15h05 gique : Ensoleillé	Profondeur	t: ATME le forage: C atteinte (m/sol	arrotier à fenêtre) : 2 et gaine : 89		Confection d'échant Sous échantillons :		yen -	BGP 105/1
Localisation X: 50,448 Projection:	314 Y	2,76002	Réf. Matérie	<u>terrain</u> : oui			Préparation de l'éch	antillon : homogé	néisatic	n
Z (sol) - m N	IGF: -	l'un piézomètre proche		O de l'air ambia échantillonnag			Méthode d'échantillonnage : truelle / pelle à main / autre			
Pz n°: -	l	NS (m/sol) : -	Doublons :				Conditionnement de	s échant acon / pot		seul
Remarques		tillons témoins : non	Laboratoire Date d'envo	EUROFINSi au laboratoir			Conservation des éc	chantillon	s :	
remarques	· 	- COURE CEOU				DOE	DVATIONS ET M		cière	
Prof.		COUPE GEOL	UGIQUE			Observa	RVATIONS ET M	Analy		
(m)	Litholog	ie Description		Venues d'eau / humidité des sols		orps étr		de ter		N°
0,00 = 0,10 = 0,20 = 0,30 = 0,40 = 0,50 = 0,60 = 0,70 = 0,80 = 0,90 = 0,		34 7-1 7-1 7-1 7-1 34 7-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3								SC15,1
1,00 — 1,10 — 1,20 — 1,30 — 1,40 — 1,50 — 1,60 — 1,70 — 1,80 — 1,90 —		Remblais schiste noir et	guo					0 ppm		SC15,2

CIN	GID	CIC Immob	ilier	/ A4 4	863 / Loos-en-gohelle (62))		
GIN BURGE	AP AP	F	FICHE D'E	CHANTILLO	ONNAGE DES S	S			NO07255 NO172503	
Sondage n°	° : SC17		Sous-traitan	t · ATMF			Confection d'échanti	illon ·	0001	BGP 105/10
Intervenant Date: 07/1	BURGE <i>A</i> 1/2017	NP : GBL Heure : 11h15 gique : Ensoleillé	Technique of Profondeur	le forage : C atteinte (m/sol forage (mm)			Sous échantillons :		yen -	
Localisation X: 50,446 Projection:	391 Y	2,75905	Analyses de Réf. Matérie	terrain : oui	s n°2		Préparation de l'écha	antillon : homogé	néisatio	n
Z (sol) - m N	NGF: -	l'un piézomètre proche		de l'air ambia échantillonnag			Méthode d'échantillo true	onnage : lle / pelle	à main	/ autre
Pz n°: -	1	NS (m/sol) : -	Doublons :	-			Conditionnement de	s échanti icon / pot		t coul
		tillons témoins : non	Laboratoire : EUROFINS				Conservation des éc			Seui
Remarques :			Date d'envoi au laboratoire :				glacière			
Prof.		COUPE GEOL	OGIQUE				RVATIONS ET MI			
(m)	Litholog	ie Description		Venues d'eau / humidité des sols			itions angers	Analy: de ter	ses rain	N°
0,00		• •			00.60	0 01.1	290.0	40 (0.1		
0,10										
0,20										
0,30		Limon marron								SC17,1
0,50		· ·								
0,60										
0,70		:: ::								
0,80	• • • • • • • • • • • • • • • • • • • •	-								
0,90	<u></u>									
1,00		1						0 ppm		
1,10										
1,20		<u> </u>								
1,30										
1,40		- Craie								SC17,2
1,50		4								
1,60										
1,70										
1,80										
1,90		_								
		_								

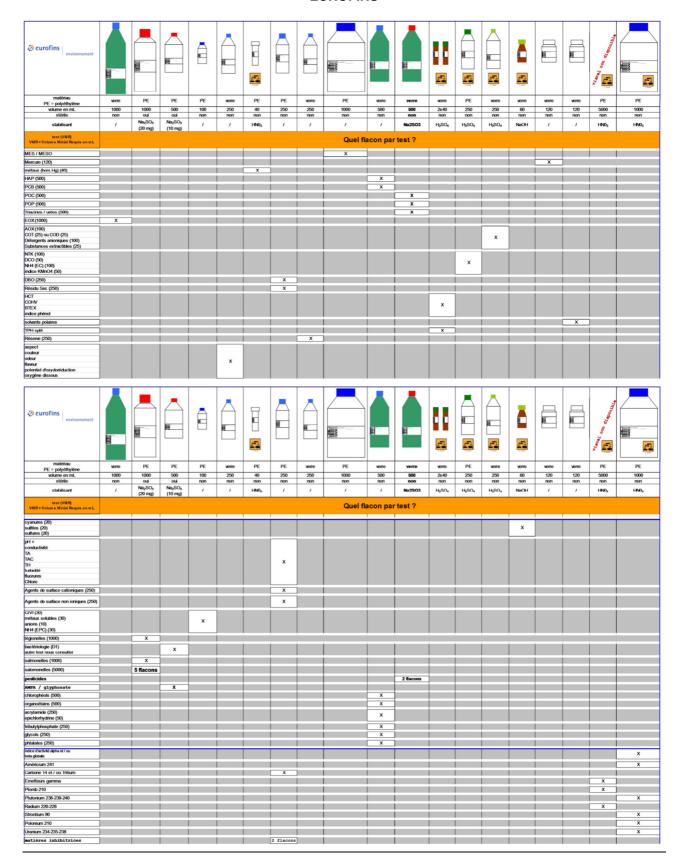
GING	23D	CIC Immobi	ilier	/ A4 4	1863 /	Loo	s-en-gohelle (62)		
BURGEA	AP	F	ICHE D'E	CHANTILLO						NO07255 NO172503
Sondage n° Intervenant E Date: 06/11/ Condition mé	BURGEAP /2017	: GBL Heure: 15h35 jue: Ensoleillé	Profondeur a	t: ATME le forage: Catteinte (m/sol			Confection d'échant Sous échantillons :		yen -	BGP 105/10
Localisation of X: 50,4476	66 Y:	2,76088	Analyses de	terrain : oui	n°2		Préparation de l'éch	antillon : homogé	néisatio	n
Projection : Z (sol) - m No	GF: -		*mesure PID	de l'air ambia échantillonnag	ant		Méthode d'échantille true	onnage : elle / pelle	à main	/ autre
Pz n°: -	NS	n piézomètre proche S (m/sol) : -	Doublons :				Conditionnement de	nt des échantillons : flacon / pot sol brut seul		
Sondage pou	ur ecnantiii	lons témoins : non	Laboratoire	: EUROFINS	5		Conservation des éc	chantillon	s :	
Remarques :	:	-		i au laboratoire					cière	
Prof.		COUPE GEOLOGIQUE OBSERVATIONS ET N Venues d'eau / Observations						ESURE Analy		
(m) 0,00 =	Lithologie	Description		humidité des sols			angers	de ter		N°
0,10		Remblais schiste noir								SC18,1
0,60 0,70 0,80 0,90 1,00 1,10 1,		Limon marron gris avec r de craie	norceaux		Morceaux de bri	ques		0 ppm		SC18,2

CIN	CID	CIC Immob	ilier	/ A4 4	1863 / L	-009	s-en-gohelle (62))				
GIN BURGE	AP AP	F	FICHE D'E	CHANTILLO	ONNAGE DES S	SOL	S		RSSPNO07255 CSSPNO172503			
Sondage n°	: SC21		Sous-traitan				Confection d'échanti	illon ·	COOF	BGP 105/10		
Intervenant Date: 07/1	BURGEA 1/2017	P : GBL Heure : 11h00 ique : Ensoleillé	Technique of Profondeur	le forage : C atteinte (m/sol forage (mm)	arrotier à fenêtre) : 2 et gaine : 89		Sous échantillons :		yen -			
Localisation X: 50,446 Projection:	392 Y	2,76	Réf. Matérie	<u>terrain</u> : oui	s n°2		Préparation de l'écha	antillon : homogé	néisatio	n		
Z (sol) - m N	IGF: -	'un piézomètre proche) de l'air ambia échantillonnag			Méthode d'échantillo true	onnage : lle / pelle	à main	/ autre		
Pz n° : -	1	NS (m/sol) : -	Doublons :	-			Conditionnement de	s échant icon / pot		t soul		
		tillons témoins : non	Laboratoire : EUROFINS Date d'envoi au laboratoire :			Conservation des éc			. scui			
Remarques	Remarques :			i au iaboratoii		255			cière			
Prof.		COUPE GEOL	OGIQUE				RVATIONS ET MI					
(m)	Litholog	e Description		Venues d'eau / humidité des sols			itions angers	Analy de ter	ses rain	N°		
0,00					00.p.	0 0	290.0	40 (0.				
0,10												
0,20		•										
0,40												
0,50		Limon marron								SC21,1		
0,60		· · · · · · · · · · · · · · · · · · ·										
0,70												
0,80		•										
0,90								0 nnm				
1,00		-						0 ppm				
1,10												
1,30												
1,40		Ossis								0004.0		
1,50		Craie								SC21,2		
1,60												
1,70												
1,80												
1,90												

CIN	CID	CIC Immob	ilier	/ A4 4	1863 / Lo	os-en-gohelle (62	2)				
GIN (BURGE/	AP AP	F	FICHE D'E						NO07255 NO172503		
Sondage n°	: SC22		Sous-traitan			Confection d'échant	illon :	0001	BGP 105/10		
Intervenant Date: 07/11	BURGE/ 1/2017	AP : GBL Heure : 9h00 gique : Ensoleillé	Technique of Profondeur	le forage : C atteinte (m/sol forage (mm)	arrotier à fenêtre) : 2 et gaine : 89	Sous échantillons :		yen -			
Localisation X: 50,447 Projection:	724 Y Lamber	´: 2,76153	Réf. Matérie	terrain : oui l: PID Arras de l'air ambia	s n°2	Préparation de l'éch	homogé	néisatio	on		
Z (sol) - m N Niveau de la	IGF: -	l'un piézomètre proche	au poste d'e	échantillonnag		Méthode d'échantille true	onnage : elle / pelle	à main	/ autre		
Pz n°: -		NS (m/sol) : -	Doublons :	-		Conditionnement de	es échanti acon / pot		t seul		
Sondage po	ur échan	tillons témoins : non	Laboratoire	: EUROFINS	6	Conservation des é					
Remarques	:	-		i au laboratoire				cière			
Prof.		COUPE GEOL	OGIQUE			RVATIONS ET M		Analyses de terrain N°			
(m)	Litholog	ie Description		Venues d'eau / humidité des sols		vations etrangers			N°		
0,00 = 0,10 = 0,20 = 0,30 = 0,40 = 0,50 = 0,70 = 0,80 = 0,90 = 0,		Remblais sablo schisteux cailloux	x noir avec		Morceaux de brique	S			SC22,1		
1,10 —	P. 0 4 2				Brique rouge		0 ppm				
1,30 — 1,40 — 1,50 — 1,60 — 1,70 — 1,80 —		Remblais gris noir avec o	cailloux						SC22,2		

GING	230	CIC Immobi	ilier	/ A4 4	1863 /	Loo	s-en-gohelle (62))		
BURGEA	AP	F	ICHE D'E	CHANTILLO	ONNAGE DES	NNAGE DES SOLS RSSP				
Sondage n°			Sous-traitan	t: ATME			Confection d'échanti	illon :		BGP 105/10
Intervenant E Date: 07/11	BURGEA /2017	P : GBL Heure : 10h30 ique : Ensoleillé	Technique d Profondeur	le forage: C atteinte (m/sol forage (mm)	arrotier à fenêtre) : 2 et gaine : 89		Sous échantillons :		yen -	
Localisation of X: - Projection:	Y	: -	Réf. Matérie	terrain : oui			Préparation de l'écha	antillon : homogé	néisatio	n
Z (sol) - m No	GF: -	un piézomètre proche	au poste d'e	de l'air ambia échantillonnag			Méthode d'échantillo true	onnage : lle / pelle	à main	/ autre
Pz n°: -	١	IS (m/sol) : -	Doublons :	-			Conditionnement de	s échant icon / pot		t seul
-	Sondage pour échantillons témoins : non		Laboratoire : EUROFINS Date d'envoi au laboratoire :			Conservation des éc				
Remarques:				au laboratoire					cière	
Prof.		COUPE GEOL	OGIQUE				RVATIONS ET MI			
	Lithologi	e Description		Venues d'eau / humidité des sols		oserva ps étra	angers	Analy de ter		N°
0,00		Remblais graveleux marr	on noir							SC23,1
0,60		Limon marron						0 ppm		SC23,2
1,00		Craie						0 ppm		SC23,3

CIN	CID	CIC Immob	ilier	/ A4 4	1863 /	Loo	s-en-gohelle (62			
GIN (BURGE/	AP	F	FICHE D'E							NO07255 NO172503
Sondage n°			Sous-traitan				Confection d'échant	illon :	CSSP	BGP 105/10
Intervenant	BURGEA	AP: GBL	Technique of	le forage: C	arrotier à fenêtre		Comedian a conditi		yen	
Date : 07/11 Condition m		Heure : 9h35 gique : Ensoleillé	Profondeur Diamètre de	atteinte (m/sol forage (mm)) : 2 et gaine : 89		Sous échantillons :		-	
Localisation X: 50,446 Projection:	64 Y	´: 2,76133	Réf. Matérie	terrain: oui	s n°2		Préparation de l'éch	homogé	néisatio	on
Z (sol) - m N	IGF: -	l'un piézomètre proche		de l'air ambia échantillonnag			Méthode d'échantillo true	onnage : lle / pelle	à main	/ autre
Pz n°: -	, ,		Doublons :	-			Conditionnement de	s échanti icon / pot		t agul
Sondage pour échantillons témoins : non		Laboratoire	: EUROFINS	3		Conservation des éc			Seui	
Remarques :			Date d'envo	i au laboratoire	e :		00.100.100.100.00		cière	
Prof	Prof. COUPE GEOLO				OI	BSEF	RVATIONS ET M	ESURE	S	
(m)	Litholog	gie Description		Venues d'eau / humidité des sols		bserva	ations angers	Analy: de ter		N°
0,00		2,		Trainiate des sols	001	ips eu	angers	de ten	alli	
0,10										
0,30										
0,50		Remblais schisto gravele avec cailloux	eux noir							SC24,1
0,60										
0,70										
0,80										
0,90		7.								
1,00		∑ 						0 ppm		
1,10		: •								
1,20										
1,30		· ·								
1,40		· · ·								
1,50		Limon marron avec more craie	eaux de							SC24,2
1,60		···								
1,70										
1,80		:								
		.:								
1,90		··•								
,										



Annexe 5. Méthodes analytiques, LQ et flaconnage

Cette annexe contient 3 pages.

EUROFINS

Méthode	n° CAS	Molécules	Eaux peu	chargées	Matrice	s solides		Air	
Wethode	11 040	Molecules	LQI	Unité	LQI	Unité	μg/tube	μg/filtre	μg/l
COHVs / B	TEXs (Co	mposés Organo Halogénés Vol	atils / BTEX	(s)			.,,		10
Méthode pai	HS/GC/MS								
HS/GC/MS	75-35-4	1,1 Dichloroéthène	2	μg/l	0,1	mg/kgMS	10		
HS/GC/MS	563-58-6	1,1 Dichloropropène	2	μg/l	0,1	mg/kgMS	10		
HS/GC/MS	630-20-6	1,1,1,2 Tétrachloroéthane	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS	71-55-6	1,1,1-Trichloroethane	2	μg/l	0,1	mg/kgMS	10		
HS/GC/MS	79-00-5	1,1,2 Trichloroéthane	5	μg/l	0,2	mg/kgMS	25		
HS/GC/MS HS/GC/MS	79-34-5 75-34-3	1,1,2,2 Tétrachloroéthane 1,1-dichloroéthane	5 2	μg/l μg/l	0,2	mg/kgMS mg/kgMS	10		
HS/GC/MS	106-93-4	1,2 Dibromoéthane	1	μg/l	0,05	mg/kgMS	5		
HS/GC/MS	590-12-5	1,2 Dibromoéthène	10	μg/l					
HS/GC/MS	95-50-1	1,2 Dichlorobenzène	1	μg/I	0,1	mg/kgMS	5		
HS/GC/MS	87-61-6	1,2,3 Trichlorobenzène	1	μg/l	0,1	mg/kgMS	25		
HS/GC/MS	526-73-8	1,2,3 Triméthylbenzène	5	μg/l	0,2	mg/kgMS	0.5		
HS/GC/MS	120-82-1 95-63-6	1,2,4 Trichlorobenzène 1,2,4 Triméthylbenzène	1	μg/l	0,1 0,1	mg/kgMS	25 5		
HS/GC/MS HS/GC/MS	107-06-2	1,2-Dichloroéthane	1	μg/l μg/l	0,05	mg/kgMS mg/kgMS	5		
HS/GC/MS	541-73-1	1,3 Dichlorobenzène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS		1,3,5 Trichlorobenzène	5	μg/l	0,2	mg/kgMS			
HS/GC/MS	108-67-8	1,3,5 Triméthylbenzène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS	106-46-7	1,4-dichlorobenzène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS	95-49-8	2-Chlorotoluène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS		2-Ethyltoluène	5	μg/l	0,2	mg/kgMS			
HS/GC/MS	106-43-4 71-43-2	4-Chlorotoluène Benzène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS HS/GC/MS	71-43-2	Bromochlorométhane	0,5 5	μg/l μg/l	0,05 0,2	mg/kgMS mg/kgMS	5 25		
HS/GC/MS	75-27-4	Bromodichlorométhane	5	μg/l	0,2	mg/kgMS	25		
HS/GC/MS	108-90-7	Chlorobenzène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS		Chloroéthane	50	μg/l	2	mg/kgMS			
HS/GC/MS		Chlorométhane	50	μg/l	2	mg/kgMS			
HS/GC/MS	75-01-4	Chlorure de vinyle	0,5	μg/l	0,02	mg/kgMS	2		
HS/GC/MS HS/GC/MS	156-59-2 10061-01-5	Cis 1,2-dichloroéthylène	5	μg/l	0,1 0,2	mg/kgMS	10 25		
HS/GC/MS	124-48-1	Cis 1,3-dichloropropène Dibromochlorométhane	2	μg/l μg/l	0,2	mg/kgMS mg/kgMS	10		
HS/GC/MS	74-95-3	Dibromométhane	5	μg/l	0,2	mg/kgMS	25		
HS/GC/MS	75-09-2	Dichlorométhane	5	μg/I	0,05	mg/kgMS	25		
HS/GC/MS	100-41-4	Ethylbenzène	1	μg/l	0,05	mg/kgMS	5		
HS/GC/MS		Ethyl-Tert-ButylEther	5	μg/l	0,2	mg/kgMS			
HS/GC/MS		Hexachloroéthane	5	μg/l	0,2	mg/kgMS			
HS/GC/MS		Iso-butylbenzène			0,2	mg/kgMS			
HS/GC/MS	98-82-8	Isopropylbenzène	1	μg/I	0,1	mg/kgMS	5		
HS/GC/MS	108-33-3 106-42-3	m+p-xylène	1	μg/l	0,05	mg/kgMS	5		
HS/GC/MS	100.00.0	Méthyl-Tert-Butyl Ether	5	μg/l	0,05	mg/kgMS			
HS/GC/MS HS/GC/MS	108-33-3 104-51-8	m-xylène n-butylbenzène	1	μg/l μg/l	0,05	mg/kgMS mg/kgMS	5 5		
HS/GC/MS	103-65-1	n-Propyl benzène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS	95-47-6	o-xylène	1	μg/l	0,5	mg/kgMS	5		
HS/GC/MS	33 17 0	Pentachloroéthane	5	μg/l	0,2	mg/kgMS	Ŭ		
HS/GC/MS	106-42-3	p-xylène	1	μg/l	0,05	mg/kgMS	5		
HS/GC/MS	135-98-8	sec-butylbenzène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS	100-42-5	Styrène	1	μg/l	0,05	mg/kgMS	5		
HS/GC/MS HS/GC/MS	98-06-6 127-18-4	tert-butylbenzène Tétrachloroéthylène	1	μg/l	0,1 0,05	mg/kgMS mg/kgMS	5 5		
HS/GC/MS	56-23-5	Tétrachlorométhane	1	μg/l μg/l	0,05	mg/kgMS	5		
HS/GC/MS	108-88-3	Toluène	1	μg/l	0,05	mg/kgMS	5		
HS/GC/MS	156-60-5	Trans-1,2-Dichloroéthylène	2	μg/l	0,1	mg/kgMS	10		
HS/GC/MS	10061-02-6	Trans-1,3-Dichloropropène	5	μg/l	0,2	mg/kgMS	25		
HS/GC/MS	75-25-2	Tribromométhane	5	μg/l	0,2	mg/kgMS	25		
HS/GC/MS HS/GC/MS	75-25-2 79-01-6	Tribromométhane Trichloroéthylène	0,25 1	μg/l μg/l	0,05	mg/kgMS	5		
HS/GC/MS	67-66-3	Trichlorométhane	2	μg/l	0,1	mg/kgMS	10		
		latils par HS/GC/MS		μ9/1	0,1	I IIIg/Kgivið	10		
HS/GC/MS	-	>MeC5-nC8	30	μg/l	1	mg/kgMS	100		
HS/GC/MS	-	>nC8-nC10	30	μg/l	1	mg/kgMS	100		
HS/GC/MS	-	>nC10-nC12					100		
		l .							

Méthode	n° CAS	Molécules	Eaux peu	chargées	Matrice	s solides		Air	
			LQI	Unité	LQI	Unité	μg/tube	μg/filtre	μg/l
COHVs / B	TEXs (Cor	mposés Organo Halogénés Vola	atils / BTEX	(s)					
Méthode par	HS/GC/MS								
HS/GC/MS	75-35-4	1,1 Dichloroéthène	2	μg/I	0,1	mg/kgMS	10		
HS/GC/MS	563-58-6	1,1 Dichloropropène	2	μg/l	0.1	mg/kgMS	10		
HS/GC/MS	630-20-6	1,1,1,2 Tétrachloroéthane	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS	71-55-6	1,1,1-Trichloroethane	2	μg/l	0,1	mg/kgMS	10		
HS/GC/MS	79-00-5	1,1,2 Trichloroéthane	5	μg/l	0,2	mg/kgMS	25		
HS/GC/MS HS/GC/MS	79-34-5 75-34-3	1,1,2,2 Tétrachloroéthane 1,1-dichloroéthane	5 2	μg/l μg/l	0,2 0,1	mg/kgMS mg/kgMS	10		
HS/GC/MS	106-93-4	1,2 Dibromoéthane	1	μg/I	0,05	mg/kgMS	5		
HS/GC/MS	590-12-5	1,2 Dibromoéthène	10	μg/l		3 3 -			
HS/GC/MS	95-50-1	1,2 Dichlorobenzène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS	87-61-6	1,2,3 Trichlorobenzène	1	μg/I	0,1	mg/kgMS	25		
HS/GC/MS	526-73-8	1,2,3 Triméthylbenzène	5	μg/l	0,1	mg/kgMS	2.5		
HS/GC/MS	120-82-1	1,2,4 Trichlorobenzène	1	μg/l	0,1	mg/kgMS	25		
HS/GC/MS	95-63-6	1,2,4 Triméthylbenzène	1	μg/l	0,1	mg/kgMS	5		
TPH Split Ar	omatiques / I	Aliphatiques C5 – C6	10	μg/l	10	mg/kgMS	10		
-	-	>C6 – C8	10	μg/l	10	mg/kgMS	10		
-	-	>C8 – C10	10	μg/l	10	mg/kgMS	10		
-	-	>C10 - C12	10	μg/l	10	mg/kgMS	10		
-	-	>C12 - C16	10	μg/l	10	mg/kgMS	10		
-	-	>C16 – C21 >C21 – C35	10 10	μg/l μg/l	10 10	mg/kgMS mg/kgMS			
-	-	>C35	10	μg/l	10	mg/kgMS			
-	-	Somme Fractions aliphatiques	80	μg/l	80	mg/kgMS	50		
-	-	>C6 – C7	10	μg/l	10	mg/kgMS	10		
-	-	>C7 – C8 >C8 – C10	10 10	μg/l μg/l	10 10	mg/kgMS mg/kgMS	10 10		
-	-	>C10 - C12	10	μg/l	10	mg/kgMS	10		
-	-	>C12 - C16	10	μg/l	10	mg/kgMS	10		
-	-	>C16 - C21	10	μg/l	10	mg/kgMS			
-	-	>C21 – C35	10	μg/l	10	mg/kgMS			
-	-	>C35 Somme Fractions aromatiquess	10 80	μg/l μg/l	10 80	mg/kgMS mg/kgMS	50		
-	-	TPH (somme)	160	μg/l	160	mg/kgMS	100		
HAPs (Hyd	drocarbure	es Aromatiques Polycycliques)	•				_		
	91-20-3	Naphtalène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
	91-57-6	2-Méthyl Naphtalène	0,01	μg/l	0,05	mg/kgMS			
		Acénaphtylène Acénaphtène	0,01 0,01	μg/l μg/l	0,05 0,05	mg/kgMS mg/kgMS	0,05	0,1 0,05	
		Fluorène	0,01	μg/I	0,05	mg/kgMS	0,05	0,05	
		Phénanthrène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
		Anthracène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
		Fluoranthène Pyrène	0,01 0,01	μg/l	0,05 0,05	mg/kgMS	0,05	0,05 0,05	
		2-Methylfluoranthène	0,01	μg/l μg/l	0,05	mg/kgMS mg/kgMS	0,03	0,03	
		Benzo(a)anthracène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
		Chrysène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
		Benzo(b)fluoranthène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
		Benzo(k)fluoranthène Benz(a)pyrène	0,01 0,01	μg/l μg/l	0,05 0,05	mg/kgMS mg/kgMS	0,05	0,05 0,05	
		Dibenzo(a,h)anthracène	0,01	μg/I μg/I	0,05	mg/kgMS	0,05	0,05	
		Indéno-(1,2,3,c,d)-pyrène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
		Benzo(g,h,i)pérylène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
HOT- /II	land a distribution	Benzo(b+k)fluoranthène	0,02	μg/l	0,1	mg/kgMS	0,1	0,1	
	irocarbure	s, Fractions aliphatiques, Fract	ons aroma	_ ` 				1	
CPG CPG	-	Hydrocarbures totaux Hydrocarbures dissous	0,03	mg/l mg/l	15	mg/kgMS			
	oar méthod	le ICP AES	0,00						
ICP-AES	-	Antimoine	0,02	mg/l	1	mg/kgMS		0,25	0,005
ICP-AES	-	Arsenic	0,005	mg/l	1	mg/kgMS		2,5	0,05
ICP-AES	-	Baryum	0,005	mg/l	1	mg/kgMS		0,25	0,005
ICP-AES	-	Cadmium	0,005	mg/l	1 5	mg/kgMS		0,25	0,005
ICP-AES	-	Chrome Cuivre	0,005 0,01	mg/l mg/l	<u>5</u>	mg/kgMS mg/kgMS		0,25 0,25	0,005
ICP-AES	-	Molybdène	0,005	mg/l	1	mg/kgMS		2,5	0,005
ICP-AES	-	Nickel	0,005	mg/l	1	mg/kgMS		0,25	0,005
ICP-AES	-	Plomb	0,005	mg/l	5	mg/kgMS			
ICP-AES	-	Selenium Zing	0,01	mg/l	10 5	mg/kgMS		0,5	0,01
ICP-AES	ar méthod	Zinc	0,02	mg/l	5	mg/kgMS		2,5	0,05
SFA	oar metnod	le SFA (Spectrométrie par Fluor Mercure	escence A	tornique)	0,1	mg/kgMS			
		ENYLS (PCBs)			0,1	I IIIg/Rgivio			
. OLIGIT	OTTO DIFTI	PCB 105	0,01	μg/l					
		PCB 149	0,01	μg/l	0,01	mg/kgMS			
		PCB 170	0,01	μg/l					
		PCB 18	0,01	μg/l	0,01	mg/kgMS			
		PCB 194 PCB 20	0,01 0,02	μg/l μg/l	0,01 0,01	mg/kgMS mg/kgMS			
		PCB 20 PCB 44	0,02	μg/I μg/I	0,01	mg/kgMS			
			-,	F5.					

Annexe 6. Bordereaux d'analyse des sols

Cette annexe contient 44 pages.

BURGEAP
Monsieur Kim POLEZ
5 chemin des Filatiers
62223 SAINTE CATHERINE LES ARRAS

RAPPORT D'ANALYSE

Version du: 14/11/2017

Dossier N°: 17E103456

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet : A200 - LOOS - CM CIC Nom Commande : A200 - LOOS - CM CIC

Référence Commande : CSSPNO172503 - BC17-5049 - KPO

Coordinateur de projet client : Mathieu Hubner / MathieuHubner@eurofins.com / +33 3 88 02 33 81

RAPPORT D'ANALYSE

Dossier N°: 17E103456 Version du : 14/11/2017

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet : A200 - LOOS - CM CIC Nom Commande : A200 - LOOS - CM CIC

N° Ech	Matrice		Référence échantillon
001	Sol	(SOL)	SC1.1
002	Sol	(SOL)	SC1.2
003	Sol	(SOL)	SC1.3
004	Sol	(SOL)	SC2.1
005	Sol	(SOL)	SC2.2
006	Sol	(SOL)	SC2.3
007	Sol	(SOL)	SC3.1
008	Sol	(SOL)	SC3.2
009	Sol	(SOL)	SC4.1
010	Sol	(SOL)	SC4.2
011	Sol	(SOL)	SC6.1
012	Sol	(SOL)	SC6.2
013	Sol	(SOL)	SC8.1
014	Sol	(SOL)	SC8.2
015	Sol	(SOL)	SC10.1
016	Sol	(SOL)	SC10.2
017	Sol	(SOL)	SC11.1
018	Sol	(SOL)	SC11.2
019	Sol	(SOL)	SC11.3
020	Sol	(SOL)	SC12.1
021	Sol	(SOL)	SC12.2
022	Sol	(SOL)	SC12.3
023	Sol	(SOL)	SC13.1
024	Sol	(SOL)	SC13.2
025	Sol	(SOL)	SC14.1
026	Sol	(SOL)	SC14.2
027	Sol	(SOL)	SC15.1
028	Sol	(SOL)	SC15.2
029	Sol	(SOL)	SC16.1
030	Sol	(SOL)	SC16.2
031	Sol	(SOL)	SC17.1
032	Sol	(SOL)	SC17.2
033	Sol	(SOL)	SC18.1
034	Sol	(SOL)	SC18.2
035	Sol	(SOL)	SC18.3
036	Sol	(SOL)	SC19.1
037	Sol	(SOL)	SC19.2
038	Sol	(SOL)	SC20.1
039	Sol	(SOL)	SC20.2
040	Sol	(SOL)	SC21.1

RAPPORT D'ANALYSE

Version du : 14/11/2017 Dossier N°: 17E103456

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet: A200 - LOOS - CM CIC Nom Commande: A200 - LOOS - CM CIC

041	Sol	(SOL)	SC21.2
042	Sol	(SOL)	SC22.1
043	Sol	(SOL)	SC22.2
044	Sol	(SOL)	SC23.1
045	Sol	(SOL)	SC23.2
046	Sol	(SOL)	SC23.3
047	Sol	(SOL)	SC24.1
048	Sol	(SOL)	SC24.2

RAPPORT D'ANALYSE

Version du : 14/11/2017 Dossier N°: 17E103456

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet: A200 - LOOS - CM CIC Nom Commande: A200 - LOOS - CM CIC

Référence Commande: CSSPNO172503 - BC17-5049 - KPO

N° Echantillon		001	002	003	004	005	006			
Référence client :		SC1.1		SC1.3	SC2.1	SC2.2	SC2.3			
Matrice:		SOL	SOL	SOL	SOL	SOL	SOL			
Date de prélèvement :		06/11/20		06/11/2017	06/11/2017	06/11/2017	06/11/2017			
Date de début d'analyse :		08/11/20	17 08/11/2017	08/11/2017	08/11/2017	08/11/2017	08/11/2017			
Administratif										
LSOIR : Mise en réserve de										
l'échantillon (en option)	_									
Préparation Physico-Chimique										
LS896 : Matière sèche	% P.B.	* 94.8			* 89.9					
XXS07 : Refus Pondéral à 2 mm	% P.B.	* 7.64			* 17.1					
XXS06 : Séchage à 40°C		* -			* -					
		Ind	ices de pollut	ion						
LS08X : Carbone Organique Total	mg/kg MS	* 10600)		* 153000					
(COT)										
Métaux Métaux										
XXS01 : Minéralisation eau régale - Bloc chauffant		* -			* -					
LS863 : Antimoine (Sb)	mg/kg MS	* <1.00			* <1.00					
LS865 : Arsenic (As)	mg/kg MS	* 12.5			* 16.2					
LS866 : Baryum (Ba)	mg/kg MS	* 165			* 234					
LS870 : Cadmium (Cd)	mg/kg MS	* <0.40			* <0.40					
LS872 : Chrome (Cr)	mg/kg MS	* 21.9			* 19.5					
LS874 : Cuivre (Cu)	mg/kg MS	* 88.6			* 51.1					
LS880 : Molybdène (Mo)	mg/kg MS	1.03			1.28					
LS881 : Nickel (Ni)	mg/kg MS	* 40.0			* 33.4					
LS883 : Plomb (Pb)	mg/kg MS	* 129			* 154					
LS885 : Sélénium (Se)	mg/kg MS	<1.00			<1.00					
LS894 : Zinc (Zn)	mg/kg MS	* 153			* 117					
LSA09 : Mercure (Hg)	mg/kg MS	* 0.12			* <0.10					
		Hvd	rocarbures to	taux						
LS919 : Hydrocarbures totaux (4 tra	nches)									
(C10-C40)	1101163									
Indice Hydrocarbures (C10-C40)	mg/kg MS	* <15.0			* 36.4					
HCT (nC10 - nC16) (Calcul)	mg/kg MS	<4.00			3.71					
HCT (>nC16 - nC22) (Calcul)	mg/kg MS	<4.00			8.38					
HCT (>nC22 - nC30) (Calcul)	mg/kg MS	<4.00			13.7					
HCT (>nC30 - nC40) (Calcul)	mg/kg MS	<4.00			10.7					

Hydrocarbures Aromatiques Polycycliques (HAPs)

RAPPORT D'ANALYSE

Version du : 14/11/2017 Dossier N°: 17E103456

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet: A200 - LOOS - CM CIC Nom Commande: A200 - LOOS - CM CIC

Référence Commande: CSSPNO172503 - BC17-5049 - KPO

Nº Fabantillan		001	002	003	004	005	006
N° Echantillon							
Référence client :		SC1.1	SC1.2	SC1.3	SC2.1	SC2.2	SC2.3
Matrice:		SOL	SOL	SOL	SOL	SOL	SOL
Date de prélèvement :		06/11/2017	06/11/2017	06/11/2017	06/11/2017	06/11/2017	06/11/2017
Date de début d'analyse :		08/11/2017	08/11/2017	08/11/2017	08/11/2017	08/11/2017	08/11/2017
Н	ydrocarbı	ures Aroma	atiques Pol	ycycliques	(HAPs)		
LSA33 : Hydrocarbures Aromatiques	Polycycliques						
(16 HAPs)							
Naphtalène	mg/kg MS	* 0.066			* <0.05		
Acénaphthylène	mg/kg MS	* <0.05			* <0.05		
Acénaphtène	mg/kg MS	* <0.05			* <0.05		
Fluorène	mg/kg MS	* <0.05			* <0.05		
Phénanthrène	mg/kg MS	* 0.16			* 0.15		
Anthracène	mg/kg MS	* <0.05			* <0.05		
Fluoranthène	mg/kg MS	* 0.099			* 0.071		
Pyrène	mg/kg MS	* 0.11			* 0.061		
Benzo-(a)-anthracène	mg/kg MS	* 0.09			* 0.098		
Chrysène	mg/kg MS	* 0.11			* 0.12		
Benzo(b)fluoranthène	mg/kg MS	* 0.13			* 0.089		
Benzo(k)fluoranthène	mg/kg MS	* <0.05			* <0.05		
Benzo(a)pyrène	mg/kg MS	* 0.066			* 0.054		
Dibenzo(a,h)anthracène	mg/kg MS	* <0.05			* <0.05		
Benzo(ghi)Pérylène	mg/kg MS	* <0.05			* <0.05		
Indeno (1,2,3-cd) Pyrène	mg/kg MS	* 0.065			* <0.05		
Somme des HAP	mg/kg MS	0.9			0.64		
		Polychloro	biphényles	(PCBs)			
LSA42 : PCB congénères réglementa	ires (7)						
PCB 28	mg/kg MS	* <0.01			* <0.01		
PCB 52	mg/kg MS	* <0.01			* <0.01		
PCB 101	mg/kg MS	* <0.01			* <0.01		
PCB 118	mg/kg MS	* <0.01			* <0.01		
PCB 138	mg/kg MS	* <0.01			* <0.01		
PCB 153	mg/kg MS	* <0.01			* <0.01		
PCB 180	mg/kg MS	* <0.01			* <0.01		
SOMME PCB (7)	mg/kg MS	<0.01			<0.01		
		Comp	osés Volat	ils			
LOOVIL Bornère	ma/ka MS	* <0.05			* <0.05		
LS0XU : Benzène	mg/kg MS				~ 0.03		
LS0Y4 : Toluène	mg/kg MS	* 0.21			<0.05		
LS0XW : Ethylbenzène	mg/kg MS	* 0.05			* <0.05		
LS0Y6 : o-Xylène	mg/kg MS	* 0.06			* <0.05		

www.cofrac.fr

<0.05 <0.0500

LS0Y5: m+p-Xylène

LS0IK : Somme des BTEX

mg/kg MS

mg/kg MS

0.45

0.770

RAPPORT D'ANALYSE

Version du : 14/11/2017 Dossier N°: 17E103456

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet: A200 - LOOS - CM CIC Nom Commande: A200 - LOOS - CM CIC

N° Echantillon Référence client : Matrice : Date de prélèvement : Date de début d'analyse :		001 SC1.1 SOL 06/11/2017 08/11/2017	002 SC1.2 SOL 06/11/2017 08/11/2017	003 SC1.3 SOL 06/11/2017 08/11/2017	004 SC2.1 SOL 06/11/2017 08/11/2017	005 SC2.2 SOL 06/11/2017 08/11/2017	006 SC2.3 SOL 06/11/2017 08/11/2017
		Li	ixiviation				
LSA36: Lixiviation 1x24 heures Lixiviation 1x24 heures Refus pondéral à 4 mm XXS4D: Pesée échantillon lixiviation Volume	% P.B.	* Fait * 35.6 * 240			* Fait * 46.8 * 240		
Masse	g	* 23.9			* 24.1		
	A	Analyses in	nmédiates	sur éluat			
LSQ13: Mesure du pH sur éluat pH (Potentiel d'Hydrogène) Température de mesure du pH LSQ02: Conductivité à 25°C sur éluat Conductivité corrigée automatiquement à 25°C Température de mesure de la conductivité LSM46: Résidu sec à 105°C (Fraction s éluat Résidus secs à 105°C	°C µS/cm °C oluble) sur mg/kg MS	* 8.4 20 * 85 19.9			* 9.00 20 * 136 19.8		
Résidus secs à 105°C (calcul)	% MS	* <0.2			* <0.2		
		Indices de	pollution s	ur éluat			
LSM68 : Carbone Organique par	mg/kg MS	* <51			* <50		
oxydation (COT) sur éluat LS04Y: Chlorures sur éluat LSN71: Fluorures sur éluat LS04Z: Sulfate (SO4) sur éluat LSM90: Indice phénol sur éluat	mg/kg MS mg/kg MS mg/kg MS mg/kg MS	* 14.4 * 5.31 * 84.8 * <0.51			* 17.5 * 11.2 * 301 * <0.50		
		Méta	ux sur élua	at			
LSM04 : Arsenic (As) sur éluat LSM05 : Baryum (Ba) sur éluat LSM11 : Chrome (Cr) sur éluat LSM13 : Cuivre (Cu) sur éluat LSN26 : Molybdène (Mo) sur éluat LSM20 : Nickel (Ni) sur éluat LSM22 : Plomb (Pb) sur éluat LSM35 : Zinc (Zn) sur éluat LS04W : Mercure (Hg) sur éluat	mg/kg MS	* <0.20 * 0.28 * <0.10 * <0.20 * 0.034 * <0.10 * 0.20 * <0.20 * <0.20			* <0.20 * 0.11 * <0.10 * <0.20 * 0.021 * <0.10 * <0.10 * <0.20 * <0.001		
LSM97 : Antimoine (Sb) sur éluat	mg/kg MS	* 0.011			* 0.014		

RAPPORT D'ANALYSE

Version du : 14/11/2017 Dossier N°: 17E103456

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet: A200 - LOOS - CM CIC Nom Commande: A200 - LOOS - CM CIC

Référence Commande: CSSPNO172503 - BC17-5049 - KPO

003 001 002 004 005 006 N° Echantillon SC1.1 SC1.2 SC1.3 SC2.1 SC2.2 SC2.3 Référence client : SOL SOL SOL SOL SOL SOL Matrice: Date de prélèvement : 06/11/2017 06/11/2017 06/11/2017 06/11/2017 06/11/2017 06/11/2017 Date de début d'analyse : 08/11/2017 08/11/2017 08/11/2017 08/11/2017 08/11/2017 08/11/2017

Métaux sur éluat

LSN05: Cadmium (Cd) sur éluat mg/kg MS < 0.002 < 0.002 LSN41: Sélénium (Se) sur éluat mg/kg MS <0.01 0.013

RAPPORT D'ANALYSE

Version du : 14/11/2017 Dossier N°: 17E103456

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet: A200 - LOOS - CM CIC Nom Commande: A200 - LOOS - CM CIC

N° Echantillon Référence client : Matrice : Date de prélèvement : Date de début d'analyse :		007 SC3.1 SOL 06/11/2017 08/11/2017	008 SC3.2 SOL 06/11/2017 08/11/2017	009 SC4.1 SOL 06/11/2017 08/11/2017	010 SC4.2 SOL 06/11/2017 08/11/2017	011 SC6.1 SOL 06/11/2017 08/11/2017	012 SC6.2 SOL 06/11/2017 08/11/2017			
		Ad	ministratif							
LSOIR : Mise en réserve de l'échantillon (en option)										
	P	réparation	Physico-C	himique						
LS896 : Matière sèche	% P.B.	* 84.6		* 92.5	* 85.3	* 87.8				
XXS07 : Refus Pondéral à 2 mm	% P.B.	* 9.20		* 4.21		* 34.5				
XXS06 : Séchage à 40°C		* -		* -		* -				
		Indice	s de pollut	ion						
LS911 : Indice phénol	mg/kg MS				<0.50					
LS917 : Cyanures totaux	mg/kg MS				* <0.5					
LS08X : Carbone Organique Total (COT)	mg/kg MS					* 153000				
Métaux										
XXS01 : Minéralisation eau régale -		* -		* -		* -				
Bloc chauffant										
LS863 : Antimoine (Sb)	mg/kg MS					* <1.00				
LS865 : Arsenic (As)	mg/kg MS	* 13.5		* 13.0		* 37.6				
LS866 : Baryum (Ba)	mg/kg MS					* 133				
LS870 : Cadmium (Cd)	mg/kg MS	* <0.40		* <0.40		* 0.76				
LS872 : Chrome (Cr)	mg/kg MS	* 15.9		* 19.9		* 12.7				
LS874 : Cuivre (Cu)	mg/kg MS	* 38.2		* 65.5		* 84.7				
LS880 : Molybdène (Mo)	mg/kg MS	* 040		* 40.7		4.25				
LS881 : Nickel (Ni)	mg/kg MS	* 24.0		* 42.7		* 34.2				
LS883 : Plomb (Pb)	mg/kg MS	* 30.6		* 59.5		* 72.8				
LS885 : Sélénium (Se)	mg/kg MS	45.4		* 100		<1.00				
LS894 : Zinc (Zn)	mg/kg MS	* 45.4		* 136		* 254				
LSA09 : Mercure (Hg)	mg/kg MS	* <0.10		* 0.17		* 0.32				
		Hydroc	arbures to	taux						
LS919: Hydrocarbures totaux (4 trans (C10-C40)	hes)									
Indice Hydrocarbures (C10-C40)	mg/kg MS	* 210		* 41.1		* 138				
HCT (nC10 - nC16) (Calcul)	mg/kg MS	38.1		3.80		4.01				
HCT (>nC16 - nC22) (Calcul)	mg/kg MS	61.1		7.00		24.5				
HCT (>nC22 - nC30) (Calcul)	mg/kg MS	74.9		15.6		47.3				
HCT (>nC30 - nC40) (Calcul)	mg/kg MS	35.8		14.7		62.3				

RAPPORT D'ANALYSE

Version du : 14/11/2017 Dossier N°: 17E103456

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet: A200 - LOOS - CM CIC Nom Commande: A200 - LOOS - CM CIC

Référence Commande: CSSPNO172503 - BC17-5049 - KPO

N° Echantillon Référence client : Matrice : Date de prélèvement :		007 SC3.1 SOL 06/11/2017	008 SC3.2 SOL 06/11/2017	009 SC4.1 SOL 06/11/2017	010 SC4.2 SOL 06/11/2017	011 SC6.1 SOL 06/11/2017	012 SC6.2 SOL 06/11/2017
Date de début d'analyse :		08/11/2017	08/11/2017	08/11/2017	08/11/2017	08/11/2017	08/11/2017
		Hydroc	arbures to	taux			
LSL4E: Découpage 8 tranches HC	CT-CPG nC10 à						
nC40 (%) > C10 - C12 inclus	%	4.16		2.41			
> C12 - C16 inclus	%	14.00		6.83			
> C16 - C20 inclus	%	19.23		10.06			
> C20 - C24 inclus	%	19.83		15.10			
> C24 - C28 inclus	%	18.41		19.24			
> C28 - C32 inclus	%	13.62		22.22			
> C32 - C36 inclus	%	7.71		16.31			
> C36 - C40 exclus	%	3.04		7.83			
	Hydrocarbu	uros Aroma	ntiaups Pol	vevelianas	(HAPs)		
	-		itiques i oi	iyeyenqu e s	(1171.9)		
LSA33: Hydrocarbures Aromatiqu (16 HAPs)	ies Polycycliques						
Naphtalène	mg/kg MS	* <0.05		* 0.07		* 0.065	
Acénaphthylène	mg/kg MS	* <0.05		* <0.05		* 0.05	
Acénaphtène	mg/kg MS	* <0.05		* <0.05		* <0.05	
Fluorène	mg/kg MS	* 0.054		* <0.05		* <0.05	
Phénanthrène	mg/kg MS	* 0.49		* 0.23		* 0.59	
Anthracène	mg/kg MS	* 0.051		* 0.061		* 0.1	
Fluoranthène	mg/kg MS	* 0.21		* 0.12		* 0.18	
Pyrène	mg/kg MS	* 0.2		* 0.11		* 0.21	
Benzo-(a)-anthracène	mg/kg MS	* 0.41		* 0.15		* 0.078	
Chrysène	mg/kg MS	* 0.52		* 0.26		* 0.11	
Benzo(b)fluoranthène	mg/kg MS	* 0.53		* 0.2		* 0.12	
Benzo(k)fluoranthène	mg/kg MS	* 0.19		* 0.061		* <0.05	
Benzo(a)pyrène	mg/kg MS	* 0.23		* 0.1		* 0.064	
Dibenzo(a,h)anthracène	mg/kg MS	* 0.056		* <0.05		* <0.05	
Benzo(ghi)Pérylène	mg/kg MS	* 0.14		* 0.066		* <0.05	
Indeno (1,2,3-cd) Pyrène	mg/kg MS	* 0.2		* 0.094		* <0.05	
Somme des HAP	mg/kg MS	3.3		1.5		1.6	
	i	Polychlorol	biphényles	(PCBs)			
LOA40 - DCD congénères réglemes		3., 0					
LSA42 : PCB congénères régleme PCB 28	mg/kg MS					* <0.01	
PCB 28 PCB 52	mg/kg MS					* <0.01	
PCB 52 PCB 101	mg/kg MS					* <0.01	
PCB 118						* <0.01	
PCB 118 PCB 138	mg/kg MS					* <0.01	
FUD 130	mg/kg MS					<0.01	

PCB 153

SAS au capital de 1 632 800 € - APE 7120B - RCS SAVERNE 422 998 971

mg/kg MS

< 0.01

N° Echantillon

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

009

010

0040

RAPPORT D'ANALYSE

800

0000

Version du : 14/11/2017 Dossier N°: 17E103456

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

007

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet: A200 - LOOS - CM CIC

Nom Commande: A200 - LOOS - CM CIC

Référence Commande: CSSPNO172503 - BC17-5049 - KPO

Référence client : Matrice :		SC3.1 SOL	SC3.2 SOL	SC4.1 SOL	SC4.2 SOL	SC6.1 SOL	SC6.2 SOL
Date de prélèvement :		06/11/2017					
				06/11/2017	06/11/2017	06/11/2017	06/11/2017
Date de début d'analyse :		08/11/201	7 08/11/2017	08/11/2017	08/11/2017	08/11/2017	08/11/2017
	İ	Polychlo	robiphényles	s (PCBs)			
LSA42 : PCB congénères réglemen	` ,						
PCB 180	mg/kg MS					* <0.01	
SOMME PCB (7)	mg/kg MS					<0.01	
		Con	nposés Vola	tils			
LSA48 : COHV par Head Space/GC/	MS solides						
Dichlorométhane	mg/kg MS	* <0.06		* <0.05			
Chloroforme	mg/kg MS	* <0.06		* <0.04			
Tetrachlorométhane	mg/kg MS	* <0.03		* <0.02			
Trichloroéthylène	mg/kg MS	* <0.05		* <0.05			
Tetrachloroéthylène	mg/kg MS	* <0.05		* <0.05			
1,1-Dichloroéthane	mg/kg MS	* <0.10		* <0.10			
1,2-dichloroéthane	mg/kg MS	* <0.05		* <0.05			
1,1,1-trichloroéthane	mg/kg MS	* <0.10		* <0.10			
1,1,2-Trichloroéthane	mg/kg MS	* <0.20		* <0.20			
cis 1,2-Dichloroéthylène	mg/kg MS	* <0.10		* <0.10			
Trans-1,2-dichloroéthylène	mg/kg MS	* <0.10		* <0.10			
Chlorure de vinyle	mg/kg MS	* <0.02		* <0.02			
1,1-Dichloroéthylène	mg/kg MS	* <0.10		* <0.10			
Bromochlorométhane	mg/kg MS	* <0.20		* <0.20			
Dibromométhane	mg/kg MS	* <0.20		* <0.20			
Bromodichlorométhane	mg/kg MS	* <0.20		* <0.20			
Dibromochlorométhane	mg/kg MS	* <0.20		* <0.20			
1,2-Dibromoéthane	mg/kg MS	* <0.05		* <0.05			
Bromoforme (tribromométhane)	mg/kg MS	* <0.20		* <0.20			
LS0XU : Benzène	mg/kg MS					* <0.05	
LS0Y4 : Toluène	mg/kg MS					* <0.05	
LS0XW : Ethylbenzène	mg/kg MS					* <0.05	
LS0Y6 : o-Xylène	mg/kg MS					* <0.05	
LS0Y5: m+p-Xylène	mg/kg MS					* 0.06	
LS0IK : Somme des BTEX	mg/kg MS					0.0600	
LSA46 : BTEX par Head Space/GC/I						0.0000	
Benzène	mg/kg MS	* <0.05		* <0.05			
Toluène	mg/kg MS	* <0.05		* <0.05			
Ethylbenzène	mg/kg MS	* <0.05		* <0.05			
m+p-Xylène	mg/kg MS	* <0.05		* <0.05			
o-Xylène	mg/kg MS	* <0.05		* <0.05			
Somme des BTEX	mg/kg MS	<0.05		<0.05			
	3···3···			-1.2-			

011

012

0000

RAPPORT D'ANALYSE

Version du : 14/11/2017 Dossier N°: 17E103456

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet: A200 - LOOS - CM CIC Nom Commande: A200 - LOOS - CM CIC

N° Echantillon Référence client : Matrice : Date de prélèvement :		007 SC3.1 SOL 06/11/2017	008 SC3.2 SOL 06/11/2017	009 SC4.1 SOL 06/11/2017	010 SC4.2 SOL 06/11/2017	011 SC6.1 SOL 06/11/2017	012 SC6.2 SOL 06/11/2017
Date de début d'analyse :		08/11/2017	08/11/2017	08/11/2017	08/11/2017	08/11/2017	08/11/2017
		Li	xiviation				
LSA36 : Lixiviation 1x24 heures Lixiviation 1x24 heures Refus pondéral à 4 mm	% P.B.					* Fait * 61.6	
XXS4D : Pesée échantillon lixiviation	% P.B.					01.0	
Volume	ml					* 240	
Masse	g					* 23.9	
	A	nalyses im	médiates	sur éluat			
LSQ13 : Mesure du pH sur éluat pH (Potentiel d'Hydrogène)						* 7.9	
Température de mesure du pH	°C					20	
LSQ02 : Conductivité à 25°C sur éluat Conductivité corrigée automatiquement à	μS/cm					* 109	
25°C Température de mesure de la conductivité	°C					19.9	
LSM46 : Résidu sec à 105°C (Fraction s	oluble) sur						
éluat Résidus secs à 105 °C	mg/kg MS					* <2000	
Résidus secs à 105°C (calcul)	% MS					* <0.2	
	ı	Indices de	pollution s	ur éluat			
LSM68 : Carbone Organique par	mg/kg MS					* 66	
oxydation (COT) sur éluat	0 0						
LS04Y : Chlorures sur éluat	mg/kg MS					* 15.5	
LSN71 : Fluorures sur éluat	mg/kg MS					* <5.04	
LS04Z : Sulfate (SO4) sur éluat	mg/kg MS					* 166	
LSM90 : Indice phénol sur éluat	mg/kg MS					* <0.50	
		Méta	ux sur élua	at			
LSM04 : Arsenic (As) sur éluat	mg/kg MS					* <0.20	
LSM05 : Baryum (Ba) sur éluat	mg/kg MS					* 0.20	
LSM11 : Chrome (Cr) sur éluat	mg/kg MS					* <0.10	
LSM13 : Cuivre (Cu) sur éluat	mg/kg MS					* <0.20	
LSN26 : Molybdène (Mo) sur éluat	mg/kg MS					* 0.016	
LSM20 : Nickel (Ni) sur éluat	mg/kg MS					* <0.10	
LSM22 : Plomb (Pb) sur éluat	mg/kg MS					* <0.10	
LSM35 : Zinc (Zn) sur éluat	mg/kg MS					* <0.20 * <0.001	
LS04W: Mercure (Hg) sur éluat	mg/kg MS mg/kg MS					* <0.001 * 0.010	
LSM97 : Antimoine (Sb) sur éluat	mg/kg Ivio					0.010	

RAPPORT D'ANALYSE

Dossier N°: 17E103456 Version du : 14/11/2017

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet: A200 - LOOS - CM CIC Nom Commande: A200 - LOOS - CM CIC

Référence Commande: CSSPNO172503 - BC17-5049 - KPO

N° Echantillon	007	008	009	010	011	012
Référence client :	SC3.1	SC3.2	SC4.1	SC4.2	SC6.1	SC6.2
Matrice :	SOL	SOL	SOL	SOL	SOL	SOL
Date de prélèvement :	06/11/2017	06/11/2017	06/11/2017	06/11/2017	06/11/2017	06/11/2017
Date de début d'analyse :	08/11/2017	08/11/2017	08/11/2017	08/11/2017	08/11/2017	08/11/2017

Métaux sur éluat

LSN05 : Cadmium (Cd) sur éluat	mg/kg MS			*	<0.002
LSN41 : Sélénium (Se) sur éluat	mg/kg MS			*	<0.01

RAPPORT D'ANALYSE

Dossier N°: 17E103456 Version du : 14/11/2017

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

0.10

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet : A200 - LOOS - CM CIC Nom Commande : A200 - LOOS - CM CIC

LS896 Matière sèche % P.B. 87.9 95.7 89.3 93.8 95.4 93.0	N° Echantillon Référence client : Matrice : Date de prélèvement : Date de début d'analyse :		06.	013 SC8.1 SOL /11/2017 6/11/2017	014 SC8.2 SOL 06/11/2017 08/11/2017	06	015 SC10.1 SOL /11/2017 8/11/2017	SC S 06/11	16 10.2 OL 1/2017 1/2017	06/	017 SC11.1 SOL /11/2017 /11/2017	06/	018 SC11.2 SOL '11/2017 /11/2017
Section Sect		r	rep	aration	Physico-	اااار	ilique						
Second S	LS896 : Matière sèche	% P.B.	*	87.9	* 95.7	*	89.3	* (93.8	*	95.4	*	93.0
LS911 : Indice phénol mg/kg MS <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <	XXS07 : Refus Pondéral à 2 mm	% P.B.	*	5.29		*	9.52			*	27.5		
LS911 : Indice phénol	XXS06 : Séchage à 40°C		*	-		*	-			*	-		
LS917 : Cyanures totaux				Indices	s de pollu	tion							
LS917 : Cyanures totaux mg/kg MS (COTT) mg/kg MS	LS911 : Indice phénol	mg/kg MS		<0.50				<	:0.50				
LS08X : Carbone Organique Total mg/kg MS		mg/kg MS						* .	<0.5				
XXS01 : Minéralisation eau régale -	LS08X : Carbone Organique Total	mg/kg MS								*	113000		
Bloc chauffant													
Bloc chauffant	XXS01 : Minéralisation eau régale -		*	-		*	-			*	-		
LS866 : Arsenic (As)													
LS866: Baryum (Ba) mg/kg MS	LS863 : Antimoine (Sb)	mg/kg MS								*	<1.00		
LS870 : Cadmium (Cd)	LS865 : Arsenic (As)	mg/kg MS	*	18.6		*	20.5			*	23.4		
LS872 : Chrome (Cr)	LS866 : Baryum (Ba)	mg/kg MS								*	171		
LS874 : Cuivre (Cu) mg/kg MS	LS870 : Cadmium (Cd)	mg/kg MS	*	<0.40		*	1.61			*	1.47		
LS880 : Molybdène (Mo) mg/kg MS	LS872 : Chrome (Cr)	mg/kg MS	*	20.7		*	14.0			*	29.1		
LS881 : Nickel (Ni)	LS874 : Cuivre (Cu)	mg/kg MS	*	60.8		*	86.1			*	119		
LS883 : Plomb (Pb)	LS880 : Molybdène (Mo)	mg/kg MS									1.82		
LS885 : Sélénium (Se)	LS881 : Nickel (Ni)	mg/kg MS	*	25.7		*	33.2			*	43.9		
LS894 : Zinc (Zn)	LS883 : Plomb (Pb)	mg/kg MS	*	45.7		*	153			*	102		
LSA09 : Mercure (Hg) mg/kg MS * 0.18 * 0.26 * 2.41	LS885 : Sélénium (Se)	mg/kg MS									1.40		
Hydrocarbures totaux LS919: Hydrocarbures totaux (4 tranches) (C10-C40) Indice Hydrocarbures (C10-C40)	LS894 : Zinc (Zn)	mg/kg MS	*	60.4		*	811			*	130		
LS919 : Hydrocarbures totaux (4 tranches) (C10-C40) Indice Hydrocarbures (C10-C40)	LSA09 : Mercure (Hg)	mg/kg MS	*	0.18		*	0.26			*	2.41		
CC10-C40				Hydroc	arbures to	tau	X						
Indice Hydrocarbures (C10-C40) mg/kg MS * 48.4 * 692 * 429 * 682 HCT (nC10 - nC16) (Calcul) mg/kg MS 9.67 73.0 6.99 195 HCT (>nC16 - nC22) (Calcul) mg/kg MS 15.8 146 2.24 150 HCT (>nC22 - nC30) (Calcul) mg/kg MS 16.1 345 43.7 297 HCT (>nC30 - nC40) (Calcul) mg/kg MS 6.92 128 376 40.1 LSL4E : Découpage 8 tranches HCT-CPG nC10 à nC40 (%) > C10 - C12 inclus % 2.31		nches)											
HCT (nC10 - nC16) (Calcul) mg/kg MS 9.67 73.0 6.99 195 HCT (>nC16 - nC22) (Calcul) mg/kg MS 15.8 146 2.24 150 HCT (>nC22 - nC30) (Calcul) mg/kg MS 16.1 345 43.7 297 HCT (>nC30 - nC40) (Calcul) mg/kg MS 6.92 128 376 40.1 LSL4E: Découpage 8 tranches HCT-CPG nC10 à nC40 (%) 2.31		mg/ka MS			* 48.4	*	692			*	429	*	682
HCT (>nC16 - nC22) (Calcul) mg/kg MS 15.8 146 2.24 150 HCT (>nC22 - nC30) (Calcul) mg/kg MS 16.1 345 43.7 297 HCT (>nC30 - nC40) (Calcul) mg/kg MS 6.92 128 376 40.1 LSL4E: Découpage 8 tranches HCT-CPG nC10 à nC40 (%) > C10 - C12 inclus % 2.31	• • • • • • • • • • • • • • • • • • • •												
HCT (>nC22 - nC30) (Calcul) mg/kg MS 16.1 345 43.7 297 HCT (>nC30 - nC40) (Calcul) mg/kg MS 6.92 128 376 40.1 LSL4E: Découpage 8 tranches HCT-CPG nC10 à nC40 (%) > C10 - C12 inclus % 2.31													
LSL4E : Découpage 8 tranches HCT-CPG nC10 à nC40 (%) > C10 - C12 inclus					16.1		345				43.7		297
nC40 (%) > C10 - C12 inclus % 2.31	HCT (>nC30 - nC40) (Calcul)	mg/kg MS			6.92		128				376		40.1
	nC40 (%)												
> CT2 - CT6 inclus % 8.23													
	> C12 - C16 inclus	%					8.23						

RAPPORT D'ANALYSE

Version du : 14/11/2017 Dossier N°: 17E103456

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet: A200 - LOOS - CM CIC Nom Commande: A200 - LOOS - CM CIC

Référence Commande: CSSPNO172503 - BC17-5049 - KPO

N° Echantillon		013	014	015	016	017	018		
Référence client :		SC8.1	SC8.2	SC10.1	SC10.2	SC11.1	SC11.2		
Matrice:		SOL	SOL	SOL	SOL	SOL	SOL		
Date de prélèvement :		06/11/2017	06/11/2017	06/11/2017	06/11/2017	06/11/2017	06/11/2017		
Date de début d'analyse :		08/11/2017	08/11/2017	08/11/2017	08/11/2017	08/11/2017	08/11/2017		
		Hydroc	arbures to	taux					
LSL4E : Découpage 8 tranches HCT	-CPG nC10 à								
nC40 (%)									
> C16 - C20 inclus	%			15.49					
> C20 - C24 inclus	%			23.60					
> C24 - C28 inclus	%			22.96					
> C28 - C32 inclus	%			16.57					
> C32 - C36 inclus	%			8.11					
> C36 - C40 exclus	%			2.72					
Hydrocarbures Aromatiques Polycycliques (HAPs)									
LSA33 : Hydrocarbures Aromatique	s Polycycliques								
(16 HAPs)									
Naphtalène	mg/kg MS	* 0.31	* <0.05	* 0.27		* <0.21	* 0.2		
Acénaphthylène	mg/kg MS	* <0.05	* <0.05	* 0.78		* <0.23	* <0.05		
Acénaphtène	mg/kg MS	* 0.27	* <0.05	* 0.17		* <0.27	* 0.087		
Fluorène	mg/kg MS	* 0.19	* <0.05	* 0.23		* <0.23	* 0.12		
Phénanthrène	mg/kg MS	* 2.0	* 0.19	* 2.4		* <0.27	* 1.2		
Anthracène	mg/kg MS	* 0.28	* <0.05	* 1.4		* <0.27	* <0.05		
Fluoranthène	mg/kg MS	* 1.8	* 0.11	* 3.3		* <0.23	* 0.19		
Pyrène	mg/kg MS	* 1.5	* 0.15	* 3.2		* <0.23	* 0.19		
Benzo-(a)-anthracène	mg/kg MS	* 1.0	* 0.1	* 3.0		* <0.23	* 0.2		
Chrysène	mg/kg MS	* 1.4	* 0.1	* 3.2		* <0.3	* 0.24		
Benzo(b)fluoranthène	mg/kg MS	* 1.4	* 0.11	* 3.4		* <0.27	* 0.22		
Benzo(k)fluoranthène	mg/kg MS	* 0.55	* <0.05	* 1.6		* <0.27	* <0.05		
Benzo(a)pyrène	mg/kg MS	* 0.99	* 0.058	* 2.5		* <0.23	* 0.12		
Dibenzo(a,h)anthracène	mg/kg MS	* 0.3	* <0.05	* 0.82		* <0.26	* <0.05		
Benzo(ghi)Pérylène	mg/kg MS	* 0.56	* <0.05	* 1.1		* <0.26	* 0.061		
Indeno (1,2,3-cd) Pyrène	mg/kg MS	* 0.78	* 0.053	* 2.1		* <0.27	* 0.07		
Somme des HAP	mg/kg MS	13	0.87	29		<0.3	2.9		
		Polychloro	hinhánylos	(DCRc)					
		Polycilloro	Dipliellyles	(PCDS)					
LSA42 : PCB congénères réglement									
PCB 28	mg/kg MS					* <0.01			
PCB 52	mg/kg MS					* <0.01			
PCB 101	mg/kg MS					* <0.01			
PCB 118	mg/kg MS					* <0.01			
PCB 138	mg/kg MS					* <0.01			
PCB 153	mg/kg MS					* <0.01			

PCB 180

SOMME PCB (7)

mg/kg MS

mg/kg MS

<0.01

<0.01

018

N° Echantillon

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

015

016

017

RAPPORT D'ANALYSE

014

Version du : 14/11/2017 Dossier N°: 17E103456

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

013

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet: A200 - LOOS - CM CIC Nom Commande: A200 - LOOS - CM CIC

Référence client : Matrice : Date de prélèvement :		SC8.1 SOL 06/11/2017		SC8.2 SOL 11/2017		SC10.1 SOL /11/2017	SC10.2 SOL 06/11/2017	SC11.1 SOL 06/11/201	7	SC11.2 SOL 06/11/2017
Date de début d'analyse :		08/11/2017	08	/11/2017	80	3/11/2017	08/11/2017	08/11/201	7	08/11/2017
		Comp	osé	s Volat	tils					
LSA48 : COHV par Head Space/GC/MS	S solides									
Dichlorométhane	mg/kg MS		*	<0.05	*	<0.05			*	<0.05
Chloroforme	mg/kg MS		*	<0.04	*	<0.05			*	<0.05
Tetrachlorométhane	mg/kg MS		*	<0.02	*	<0.02			*	<0.02
Trichloroéthylène	mg/kg MS		*	<0.05	*	<0.05			*	<0.05
Tetrachloroéthylène	mg/kg MS		*	<0.05	*	<0.05			*	<0.05
1,1-Dichloroéthane	mg/kg MS		*	<0.10	*	<0.10			*	<0.10
1,2-dichloroéthane	mg/kg MS		*	<0.05	*	<0.05			*	<0.05
1,1,1-trichloroéthane	mg/kg MS		*	<0.10	*	<0.10			*	<0.10
1,1,2-Trichloroéthane	mg/kg MS		*	<0.20	*	<0.20			*	<0.20
cis 1,2-Dichloroéthylène	mg/kg MS		*	<0.10	*	<0.10			*	<0.10
Trans-1,2-dichloroéthylène	mg/kg MS		*	<0.10	*	<0.10			*	<0.10
Chlorure de vinyle	mg/kg MS		*	<0.02	*	<0.02			*	<0.02
1,1-Dichloroéthylène	mg/kg MS		*	<0.10	*	<0.10			*	<0.10
Bromochlorométhane	mg/kg MS		*	<0.20	*	<0.20			*	<0.20
Dibromométhane	mg/kg MS		*	<0.20	*	<0.20			*	<0.20
Bromodichlorométhane	mg/kg MS		*	<0.20	*	<0.20			*	<0.20
Dibromochlorométhane	mg/kg MS		*	<0.20	*	<0.20			*	<0.20
1,2-Dibromoéthane	mg/kg MS			<0.05	*	<0.05				< 0.05
Bromoforme (tribromométhane)	mg/kg MS		*	<0.20	*	<0.20			*	<0.20
LS0XU : Benzène	mg/kg MS							* <0.05		
LS0Y4 : Toluène	mg/kg MS							* <0.05		
LS0XW : Ethylbenzène	mg/kg MS							* <0.05		
LS0Y6 : o-Xylène	mg/kg MS							* <0.05		
LS0Y5 : m+p-Xylène	mg/kg MS							* <0.05		
LS0IK : Somme des BTEX	mg/kg MS							<0.0500		
LSA46: BTEX par Head Space/GC/MS	3									
Benzène	mg/kg MS		*	<0.05	*	<0.05			*	<0.05
Toluène	mg/kg MS		*	<0.05	*	<0.05			*	0.10
Ethylbenzène	mg/kg MS		*	<0.05	*	<0.05			*	<0.05
m+p-Xylène	mg/kg MS		*	<0.05	*	<0.05			*	0.36
o-Xylène	mg/kg MS		*	<0.05	*	<0.05			*	0.08
Somme des BTEX	mg/kg MS			<0.05		<0.05				0.54
		Chlo	oro	ohénols	S					
LS2EH : 2,6-Diméthylphénol	mg/kg MS	<0.025								
LS2EI: 3,4-Diméthylphénol	mg/kg MS	<0.03								
LS2EJ : 4-Ethylphénol (p-Ethylphénol)	mg/kg MS	<0.025								

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

Version du : 14/11/2017 Dossier N°: 17E103456

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet: A200 - LOOS - CM CIC Nom Commande: A200 - LOOS - CM CIC

Référence Commande: CSSPNO172503 - BC17-5049 - KPO

N° Echantillon Référence client :		013 SC8.1	014 SC8.2	015 SC10.1	016 SC10.2	017 SC11.1	018 SC11.2
Matrice :		SOL	SOL	SOL	SOL	SOL	SOL
Date de prélèvement :		06/11/2017	06/11/2017	06/11/2017	06/11/2017	06/11/2017	06/11/2017
Date de début d'analyse :		08/11/2017	08/11/2017	08/11/2017	08/11/2017	08/11/2017	08/11/2017
		Ch	lorophénols	3			
LS2EK : 3-Ethylphénol	mg/kg MS	<0.02	•				
(m-Ethylphénol)							
LS2EM : Pentachlorophénol (PCP)	mg/kg MS	* <0.02					
LS2EP : 2,3,4-Trichlorophénol	mg/kg MS	<0.02					
LS2EQ : 2,3,5-Trichlorophénol	mg/kg MS	<0.02					
LS2ER: 2,3,6-Trichlorophénol	mg/kg MS	<0.02					
LS2ES : 2,3-Dichlorophénol	mg/kg MS	* <0.02					
LS2ET: 2,4,6-Trichlorophénol	mg/kg MS	* <0.02					
LS2EU : 2-Chlorophénol	mg/kg MS	* <0.02					
LS2EV : 3,4-Dichlorophénol	mg/kg MS	<0.02					
LS2EW: 3,5-Dichlorophénol	mg/kg MS	<0.02					
LS2EY : 3-Chlorophénol	mg/kg MS	<0.02					
LS2EZ : 4-Chlorophénol	mg/kg MS	<0.02					
LS2F0: 2,3,5,6-Tétrachlorophénol	mg/kg MS	<0.02					
LS2F1 : 2,6-Dichlorophénol	mg/kg MS	* <0.02					
LS2F2 : 2,4 + 2,5 - Dichlorophénol	mg/kg MS	<0.05					
LS2F3 : 2,4,5-Trichlorophénol	mg/kg MS	* <0.02					
LS2F4 : 3,4,5-Trichlorophénol	mg/kg MS	<0.02					
LS2F5 : 2,3,4,6-Tetrachlorophénol (TeCP)	mg/kg MS	<0.02					
LS2F6 : 2,3,4,5-Tetrachlorophénol	mg/kg MS	<0.02					
LS2G9 : 4-chloro-3-methylphénol	mg/kg MS	<0.02					
LS2EL : 4-Méthylphénol (p-crésol)	mg/kg MS	* 0.048					
LS2EN : Phénol	mg/kg MS	* <0.15					
LS2F7 : 2-Méthylphénol (o-crésol)	mg/kg MS	* <0.02					
LS2F8 : 3-Méthylphénol (m-crésol)	mg/kg MS	* <0.025					
LS2EG : 2,5-Diméthylphénol	mg/kg MS	* <0.02					
LS2EF : 2,4-Diméthylphénol	mg/kg MS	<0.025					
		ı	Lixiviation				
LSA36 : Lixiviation 1x24 heures Lixiviation 1x24 heures						* Fait	
Refus pondéral à 4 mm	% P.B.					* 83.3	
XXS4D : Pesée échantillon lixiviation							
Volume	ml					* 240	
Masse	g					* 23.2	
							_

RAPPORT D'ANALYSE

Dossier N°: 17E103456 Version du : 14/11/2017

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet : A200 - LOOS - CM CIC Nom Commande : A200 - LOOS - CM CIC

N° Echantillon		013	014	015	016	017	018
Référence client :		SC8.1	SC8.2	SC10.1	SC10.2	SC11.1	SC11.2
Matrice :		SOL	SOL	SOL	SOL	SOL	SOL
Date de prélèvement :		06/11/2017	06/11/2017	06/11/2017	06/11/2017	06/11/2017	06/11/2017
Date de début d'analyse :		08/11/2017	08/11/2017	08/11/2017	08/11/2017	08/11/2017	08/11/2017
	A	nalyses im	médiates	sur éluat			
LSQ13 : Mesure du pH sur éluat							
pH (Potentiel d'Hydrogène)						* 7.7	
Température de mesure du pH	°C					20	
LSQ02 : Conductivité à 25°C sur éluat							
Conductivité corrigée automatiquement à 25°C	μS/cm					* 78	
Température de mesure de la conductivité	°C					19.5	
LSM46 : Résidu sec à 105°C (Fraction se	oluble) sur						
éluat Résidus secs à 105 °C	mg/kg MS					* <2000	
Résidus secs à 105°C (calcul)	% MS					* <0.2	
resolute cost a real of (calcal)						0.2	
		Indices de	pollution s	ur eluat			
LSM68 : Carbone Organique par oxydation (COT) sur éluat	mg/kg MS					* <52	
LS04Y : Chlorures sur éluat	mg/kg MS					* <10.3	
LSN71 : Fluorures sur éluat	mg/kg MS					* 8.81	
LS04Z : Sulfate (SO4) sur éluat	mg/kg MS					* <51.7	
LSM90 : Indice phénol sur éluat	mg/kg MS					* <0.52	
		Méta	ux sur élua	at			
						* <0.21	
LSM04 : Arsenic (As) sur éluat	mg/kg MS					~0.21	
LSM05 : Baryum (Ba) sur éluat	mg/kg MS					* 0.26	
LSM11 : Chrome (Cr) sur éluat	mg/kg MS					* <0.10	
LSM13 : Cuivre (Cu) sur éluat	mg/kg MS					* <0.21	
LSN26 : Molybdène (Mo) sur éluat	mg/kg MS					* 0.019	
LSM20 : Nickel (Ni) sur éluat	mg/kg MS					* <0.10	
LSM22 : Plomb (Pb) sur éluat	mg/kg MS					* <0.10	
LSM35 : Zinc (Zn) sur éluat	mg/kg MS					* <0.21	
LS04W : Mercure (Hg) sur éluat	mg/kg MS					* <0.001	
LSM97 : Antimoine (Sb) sur éluat	mg/kg MS					* 0.005	
LSN05 : Cadmium (Cd) sur éluat	mg/kg MS					* <0.002	
LSN41 : Sélénium (Se) sur éluat	mg/kg MS					* <0.01	

RAPPORT D'ANALYSE

Version du : 14/11/2017 Dossier N°: 17E103456

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet: A200 - LOOS - CM CIC Nom Commande: A200 - LOOS - CM CIC

N° Echantillon Référence client : Matrice : Date de prélèvement : Date de début d'analyse :		019 SC11.3 SOL 06/11/2017 08/11/2017	020 SC12.1 SOL 06/11/2017 08/11/2017 ministratif	021 SC12.2 SOL 06/11/2017 08/11/2017	022 SC12.3 SOL 06/11/2017 08/11/2017	023 SC13.1 SOL 06/11/2017 08/11/2017	024 SC13.2 SOL 06/11/2017 08/11/2017					
LSOIR : Mise en réserve de l'échantillon (en option)												
Préparation Physico-Chimique												
LS896 : Matière sèche	% P.B.	* 92.6	* 95.5	* 88.8		* 88.4						
XXS07 : Refus Pondéral à 2 mm	% P.B.		* 20.6			* 28.3						
XXS06 : Séchage à 40°C			* -			* -						
		Indices	s de pollut	ion								
LS08X : Carbone Organique Total (COT)	mg/kg MS		* 122000									
			Métaux									
XXS01: Minéralisation eau régale - Bloc chauffant LS863: Antimoine (Sb) LS865: Arsenic (As) LS866: Baryum (Ba) LS870: Cadmium (Cd) LS872: Chrome (Cr) LS874: Cuivre (Cu) LS880: Molybdène (Mo) LS881: Nickel (Ni) LS883: Plomb (Pb) LS885: Sélénium (Se) LS894: Zinc (Zn)	mg/kg MS		* - 1.00 * 13.5 * 176 * 0.42 * 20.1 * 40.5 1.58 * 31.6 * 55.4 <1.00			* 15.0 * <0.40 * 18.9 * 98.6 * 54.5 * 108						
LSA09 : Mercure (Hg)	mg/kg MS		* 0.37			* <0.10						
Hydrocarbures totaux												
LS919: Hydrocarbures totaux (4 tran (C10-C40) Indice Hydrocarbures (C10-C40) HCT (nC10 - nC16) (Calcul) HCT (>nC16 - nC22) (Calcul) HCT (>nC22 - nC30) (Calcul) HCT (>nC30 - nC40) (Calcul) LSL4E: Découpage 8 tranches HCT-0 nC40 (%) > C10 - C12 inclus	mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS	* 146 29.3 47.1 49.2 20.1	* 74.1 6.28 17.3 31.5 19.1	* 40.2 4.52 4.15 16.8 14.7		* 26.6 2.33 2.07 13.9 8.33						

RAPPORT D'ANALYSE

Version du : 14/11/2017 Dossier N°: 17E103456

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet: A200 - LOOS - CM CIC Nom Commande: A200 - LOOS - CM CIC

N° Echantillon Référence client : Matrice : Date de prélèvement : Date de début d'analyse :	019 SC11.3 SOL 06/11/2017 08/11/2017	020 SC12.1 SOL 06/11/2017 08/11/2017	021 SC12.2 SOL 06/11/2017 08/11/2017	022 SC12.3 SOL 06/11/2017 08/11/2017	023 SC13.1 SOL 06/11/2017 08/11/2017	024 SC13.2 SOL 06/11/2017 08/11/2017					
Hydrocarbures totaux											
LSL4E : Découpage 8 tranches HCT-CPG nC10 à											
nC40 (%) > C12 - C16 inclus %					0.85						
> C16 - C20 inclus %					3.66						
> C20 - C24 inclus %					9.64						
> C24 - C28 inclus %					24.52						
> C28 - C32 inclus %					40.16						
> C32 - C36 inclus %					11.99						
> C36 - C40 exclus %					1.26						
Hydrocarbures Aromatiques Polycycliques (HAPs)											
LSA33 : Hydrocarbures Aromatiques Polycycliques											
(16 HAPs)											
Naphtalène mg/kg MS	* 0.055	* 0.074	* 0.13		* <0.05						
Acénaphthylène mg/kg MS	* <0.05	* 0.13	* 0.051		* <0.05						
Acénaphtène mg/kg MS	* <0.05	* <0.05 * <0.05	* 0.15		* <0.05						
Fluorène mg/kg MS	* <0.05	40.00	* 0.094		* <0.05						
Phénanthrène mg/kg MS Anthracène mg/kg MS	* 0.47 * 0.056	* 0.33 * 0.14	* 1.1 * 0.1		* 0.16 * <0.05						
Fluoranthène mg/kg MS	* 0.24	* 0.14	* 0.4		* <0.05						
Pyrène mg/kg MS	* 0.33	* 0.36	* 0.67		* <0.05						
Benzo-(a)-anthracène mg/kg MS	* 0.21	* 0.29	* 0.34		* 0.082						
Chrysène mg/kg MS	* 0.31	* 0.49	* 0.43		* 0.089						
Benzo(b)fluoranthène mg/kg MS	* 0.28	* 0.68	* 0.29		* <0.05						
Benzo(k)fluoranthène mg/kg MS	* 0.053	* 0.22	* 0.064		* <0.05						
Benzo(a)pyrène mg/kg MS	* 0.11	* 0.46	* 0.13		* <0.05						
Dibenzo(a,h)anthracène mg/kg MS	* <0.05	* 0.2	* <0.05		* <0.05						
Benzo(ghi)Pérylène mg/kg MS	* 0.083	* 0.26	* <0.05		* <0.05						
Indeno (1,2,3-cd) Pyrène mg/kg MS	* 0.11	* 0.55	* <0.05		* <0.05						
Somme des HAP mg/kg MS	2.3	4.6	3.9		0.33						
Polychlorobiphényles (PCBs)											
LSA42 : PCB congénères réglementaires (7) PCB 28 mg/kg MS		* <0.01									
PCB 52 mg/kg MS		* <0.01									
PCB 101 mg/kg MS		* <0.01									
PCB 118 mg/kg MS		* <0.01									
PCB 138 mg/kg MS		* <0.01									
5 5											
PCB 153 mg/kg MS		* <0.01									

RAPPORT D'ANALYSE

Version du : 14/11/2017 Dossier N°: 17E103456

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet: A200 - LOOS - CM CIC Nom Commande: A200 - LOOS - CM CIC

Référence Commande: CSSPNO172503 - BC17-5049 - KPO

N° Echantillon	019	020	021	022	023	024
Référence client :	SC11.3	SC12.1	SC12.2	SC12.3	SC13.1	SC13.2
Matrice:	SOL	SOL	SOL	SOL	SOL	SOL
Date de prélèvement :	06/11/2017	06/11/2017	06/11/2017	06/11/2017	06/11/2017	06/11/2017
Date de début d'analyse :	08/11/2017	08/11/2017	08/11/2017	08/11/2017	08/11/2017	08/11/2017

Polychlorobiphényles (PCBs)

LSA42 : PCB congénères régleme	entaires (7)									
SOMME PCB (7)	mg/kg MS			<0.01						
Composés Volatils										
LSA48 : COHV par Head Space/G	C/MS solides									
Dichlorométhane	mg/kg MS	*	<0.05		*	<0.05		*	<0.05	
Chloroforme	mg/kg MS	*	<0.04		*	<0.05		*	<0.05	
Tetrachlorométhane	mg/kg MS	*	<0.02		*	< 0.03		*	<0.02	
Trichloroéthylène	mg/kg MS	*	<0.05		*	<0.05		*	<0.05	
Totrophloroáthylàna	malka MC	*	~0.0E		*	-0.0E		*	<0.0E	

Chloroforme	mg/kg MS	*	<0.04			*	<0.05	*	<0.05	
Tetrachlorométhane	mg/kg MS	*	<0.02			*	<0.03	*	<0.02	
Trichloroéthylène	mg/kg MS	*	<0.05			*	<0.05	*	<0.05	
Tetrachloroéthylène	mg/kg MS	*	<0.05			*	<0.05	*	<0.05	
1,1-Dichloroéthane	mg/kg MS	*	<0.10			*	<0.10	*	<0.10	
1,2-dichloroéthane	mg/kg MS	*	<0.05			*	<0.05	*	<0.05	
1,1,1-trichloroéthane	mg/kg MS	*	<0.10			*	<0.10	*	<0.10	
1,1,2-Trichloroéthane	mg/kg MS	*	<0.20			*	<0.20	*	<0.20	
cis 1,2-Dichloroéthylène	mg/kg MS	*	<0.10			*	<0.10	*	<0.10	
Trans-1,2-dichloroéthylène	mg/kg MS	*	<0.10			*	<0.10	*	<0.10	
Chlorure de vinyle	mg/kg MS	*	<0.02			*	<0.02	*	<0.02	
1,1-Dichloroéthylène	mg/kg MS	*	<0.10			*	<0.10	*	<0.10	
Bromochlorométhane	mg/kg MS	*	<0.20			*	<0.20	*	<0.20	
Dibromométhane	mg/kg MS	*	<0.20			*	<0.20	*	<0.20	
Bromodichlorométhane	mg/kg MS	*	<0.20			*	<0.20	*	<0.20	
Dibromochlorométhane	mg/kg MS	*	<0.20			*	<0.20	*	<0.20	
1,2-Dibromoéthane	mg/kg MS	*	<0.05			*	<0.05	*	<0.05	
Bromoforme (tribromométhane)	mg/kg MS	*	<0.20			*	<0.20	*	<0.20	
LS0XU : Benzène	mg/kg MS			*	<0.05					
LS0Y4 : Toluène	mg/kg MS			*	<0.05					
LS0XW : Ethylbenzène	mg/kg MS			*	< 0.05					
LS0Y6 : o-Xylène	mg/kg MS			*	<0.05					
LS0Y5 : m+p-Xylène	mg/kg MS			*	<0.05					
LS0IK : Somme des BTEX	mg/kg MS				<0.0500					
LSA46: BTEX par Head Space/GC/MS										
Benzène	mg/kg MS	*	<0.05			*	<0.05	*	<0.05	
Toluène	mg/kg MS	*	<0.05			*	<0.05	*	<0.05	
Ethylbenzène	mg/kg MS	*	<0.05			*	<0.05	*	<0.05	
m+p-Xylène	mg/kg MS	*	<0.05			*	<0.05	*	<0.05	
o-Xylène	mg/kg MS	*	<0.05			*	<0.05	*	<0.05	
Somme des BTEX	mg/kg MS		<0.05				<0.05		<0.05	

Lixiviation

RAPPORT D'ANALYSE

Version du : 14/11/2017 Dossier N°: 17E103456

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

0.40

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet: A200 - LOOS - CM CIC Nom Commande: A200 - LOOS - CM CIC

N° Echantillon		019		020	021	022	023	024		
Référence client :		SC11.3		SC12.1	SC12.2	SC12.3	SC13.1	SC13.2		
Matrice :		SOL		SOL	SOL	SOL	SOL	SOL		
Date de prélèvement :		06/11/2017	06	/11/2017	06/11/2017	06/11/2017	06/11/2017	06/11/2017		
Date de début d'analyse :		08/11/2017	30	3/11/2017	08/11/2017	08/11/2017	08/11/2017	08/11/2017		
		Li	xiv	iation						
LSA36 : Lixiviation 1x24 heures										
Lixiviation 1x24 heures			*	Fait						
Refus pondéral à 4 mm	% P.B.		*	66.5						
XXS4D : Pesée échantillon lixiviation			_	0.40						
Volume Masse	ml		*	240 24.3						
ividsse	g									
Analyses immédiates sur éluat										
LSQ13 : Mesure du pH sur éluat										
pH (Potentiel d'Hydrogène)	90		*	8.1						
Température de mesure du pH	°C			19						
LSQ02 : Conductivité à 25°C sur éluat Conductivité corrigée automatiquement à 25°C	μS/cm		*	185						
Température de mesure de la conductivité	°C			19.0						
LSM46 : Résidu sec à 105°C (Fraction s	oluble) sur									
éluat Résidus secs à 105 °C	mg/kg MS		*	<2000						
Résidus secs à 105°C (calcul)	% MS		*	<0.2						
	l	Indices de	pol	lution s	ur éluat					
LSM68 : Carbone Organique par	mg/kg MS		*	<50						
oxydation (COT) sur éluat	0 0									
LS04Y: Chlorures sur éluat	mg/kg MS		*	39.0						
LSN71 : Fluorures sur éluat	mg/kg MS		*	8.76						
LS04Z : Sulfate (SO4) sur éluat	mg/kg MS		*	463						
LSM90 : Indice phénol sur éluat	mg/kg MS		*	<0.50						
Métaux sur éluat										
LSM04 : Arsenic (As) sur éluat	mg/kg MS		*	<0.20						
LSM05 : Baryum (Ba) sur éluat	mg/kg MS		*	0.14						
LSM11 : Chrome (Cr) sur éluat	mg/kg MS		*	<0.10						
LSM13 : Cuivre (Cu) sur éluat	mg/kg MS		*	<0.20						
LSN26 : Molybdène (Mo) sur éluat	mg/kg MS		*	0.033						
LSM20 : Nickel (Ni) sur éluat	mg/kg MS		*	<0.10						
LSM22 : Plomb (Pb) sur éluat	mg/kg MS		*	<0.10						
LSM35 : Zinc (Zn) sur éluat	mg/kg MS		*	<0.20						
LS04W : Mercure (Hg) sur éluat	mg/kg MS		*	<0.001						
LSM97 : Antimoine (Sb) sur éluat	mg/kg MS		*	0.010						

RAPPORT D'ANALYSE

Dossier N°: 17E103456 Version du : 14/11/2017

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet: A200 - LOOS - CM CIC Nom Commande: A200 - LOOS - CM CIC

Référence Commande : CSSPNO172503 - BC17-5049 - KPO

021 023 019 020 022 024 N° Echantillon SC11.3 SC12.1 SC12.2 SC12.3 SC13.1 SC13.2 Référence client : SOL SOL SOL SOL SOL SOL Matrice: Date de prélèvement : 06/11/2017 06/11/2017 06/11/2017 06/11/2017 06/11/2017 06/11/2017 Date de début d'analyse : 08/11/2017 08/11/2017 08/11/2017 08/11/2017 08/11/2017 08/11/2017

Métaux sur éluat

LSN05 : Cadmium (Cd) sur éluat	mg/kg MS	* <0.002
N41 : Sélénium (Se) sur éluat	mg/kg MS	* <0.01

RAPPORT D'ANALYSE

Version du : 14/11/2017 Dossier N°: 17E103456

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet: A200 - LOOS - CM CIC Nom Commande: A200 - LOOS - CM CIC

N° Echantillon Référence client : Matrice : Date de prélèvement : Date de début d'analyse :		025 SC14.1 SOL 06/11/2017 08/11/2017	026 SC14.2 SOL 06/11/2017 08/11/2017 ministratif	027 SC15.1 SOL 06/11/2017 08/11/2017	028 SC15.2 SOL 06/11/2017 08/11/2017	029 SC16.1 SOL 06/11/2017 08/11/2017	030 SC16.2 SOL 06/11/2017 08/11/2017					
LSOIR : Mise en réserve de l'échantillon (en option)												
Préparation Physico-Chimique												
LS896 : Matière sèche	% P.B.	* 91.6		* 93.5		* 93.2						
XXS07 : Refus Pondéral à 2 mm	% P.B.	* 14.6		* 42.0		* <1.00						
XXS06 : Séchage à 40°C		* -		* -		* -						
Indices de pollution												
LS08X : Carbone Organique Total (COT)	mg/kg MS					* 200000						
			Métaux									
XXS01 : Minéralisation eau régale - Bloc chauffant LS863 : Antimoine (Sb)	mg/kg MS	* _		* _		* - * <1.00						
LS865 : Arsenic (As)	mg/kg MS	* 12.4		* 11.4		* 15.8						
LS866 : Baryum (Ba)	mg/kg MS	12.7		11.4		* 128						
LS870 : Cadmium (Cd)	mg/kg MS	* <0.40		* 0.42		* <0.40						
LS872 : Chrome (Cr)	mg/kg MS	* 19.2		* 18.9		* 18.7						
LS874 : Cuivre (Cu)	mg/kg MS	* 69.5		* 73.3		* 65.4						
LS880 : Molybdène (Mo)	mg/kg MS	00.0		. 0.0		1.48						
LS881 : Nickel (Ni)	mg/kg MS	* 45.6		* 52.2		* 53.8						
LS883 : Plomb (Pb)	mg/kg MS	* 32.7		* 37.3		* 43.4						
LS885 : Sélénium (Se)	mg/kg MS					<1.00						
LS894 : Zinc (Zn)	mg/kg MS	* 94.0		* 100		* 118						
LSA09 : Mercure (Hg)	mg/kg MS	* <0.10		* <0.10		* <0.10						
Hydrocarbures totaux												
LS919: Hydrocarbures totaux (4 tran (C10-C40)	nches)											
Indice Hydrocarbures (C10-C40)	mg/kg MS	* <15.0		* 22.2		* 27.5						
HCT (nC10 - nC16) (Calcul)	mg/kg MS	<4.00		4.52		1.32						
HCT (>nC16 - nC22) (Calcul)	mg/kg MS	<4.00		5.89		3.39						
HCT (>nC22 - nC30) (Calcul)	mg/kg MS	<4.00		7.72		6.65						
HCT (>nC30 - nC40) (Calcul)	mg/kg MS	<4.00		4.08		16.2						
LSL4E : Découpage 8 tranches HCT-	CPG nC10 à											
nC40 (%) > C10 - C12 inclus	%	-		3.90								

RAPPORT D'ANALYSE

Dossier N°: 17E103456 Version du : 14/11/2017

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet: A200 - LOOS - CM CIC Nom Commande: A200 - LOOS - CM CIC

Référence Commande : CSSPNO172503 - BC17-5049 - KPO

N° Echantillon Référence client : Matrice : Date de prélèvement : Date de début d'analyse :		025 SC14.1 SOL 06/11/2017 08/11/2017	026 SC14.2 SOL 06/11/2017 08/11/2017	027 SC15.1 SOL 06/11/2017 08/11/2017	028 SC15.2 SOL 06/11/2017 08/11/2017	029 SC16.1 SOL 06/11/2017 08/11/2017	030 SC16.2 SOL 06/11/2017 08/11/2017
		Hydroc	arbures to	taux			
LSL4E: Découpage 8 tranches HO nC40 (%) > C12 - C16 inclus > C16 - C20 inclus > C20 - C24 inclus > C24 - C28 inclus > C28 - C32 inclus > C32 - C36 inclus > C36 - C40 exclus	% % % % % %	- - - - - -		16.44 17.56 19.10 18.90 11.11 6.50 6.48			
	Hydrocarbu	ures Aroma	tiques Pol	vcvcliques	(HAPs)		
LSA33: Hydrocarbures Aromatique (16 HAPs) Naphtalène Acénaphthylène Acénaphtène Fluorène Phénanthrène Anthracène Fluoranthène Pyrène Benzo-(a)-anthracène Chrysène Benzo(b)fluoranthène Benzo(k)fluoranthène Benzo(a)pyrène Dibenzo(a,h)anthracène Benzo(ghi)Pérylène Indeno (1,2,3-cd) Pyrène	-			* <0.05 * <0.05 * <0.05 * <0.05 * 0.24 * <0.05 * 0.061 * 0.087 * 0.1 * <0.05 * <0.05 * <0.05 * <0.05 * <0.05		* <0.05 * <0.05 * <0.05 * <0.05 * 0.084 * <0.05 * <0.05 * <0.05 * <0.05 * <0.09 * 0.092 * 0.066 * <0.05 * <0.05 * <0.05 * <0.05	
Somme des HAP	mg/kg MS	0.59		0.49		0.33	
	ı	Polychloro	biphényles	(PCBs)			
LSA42: PCB congénères régleme PCB 28 PCB 52 PCB 101 PCB 118 PCB 138 PCB 153	mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS					* <0.01 * <0.01 * <0.01 * <0.01 * <0.01 * <0.01	

PCB 180

mg/kg MS

< 0.01

RAPPORT D'ANALYSE

Dossier N°: 17E103456 Version du : 14/11/2017

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet: A200 - LOOS - CM CIC Nom Commande: A200 - LOOS - CM CIC

Référence Commande: CSSPNO172503 - BC17-5049 - KPO

N° Echantillon	025	026	027	028	029	030
Référence client :	SC14.1	SC14.2	SC15.1	SC15.2	SC16.1	SC16.2
Matrice:	SOL	SOL	SOL	SOL	SOL	SOL
Date de prélèvement :	06/11/2017	06/11/2017	06/11/2017	06/11/2017	06/11/2017	06/11/2017
Date de début d'analyse :	08/11/2017	08/11/2017	08/11/2017	08/11/2017	08/11/2017	08/11/2017

Polychlorobiphényles (PCBs)

SOMME PCB (7) mg/kg MS
SA48 COHV par Head Space/GC/MS solides Dichlorométhane mg/kg MS
SA48 COHV par Head Space/GC/MS solides Dichlorométhane mg/kg MS
Dichlorométhane mg/kg MS * < 0.05
Chloroforme mg/kg MS * <0.04 * <0.04 Tetrachlorométhane mg/kg MS * <0.02 * <0.02 Trichloroéthylène mg/kg MS * <0.05 * <0.05 Tetrachloroéthylène mg/kg MS * <0.05 * <0.05 1,1-Dichloroéthane mg/kg MS * <0.005 * <0.05 1,1-Lichloroéthane mg/kg MS * <0.005 * <0.05 1,1-Lichloroéthane mg/kg MS * <0.005 * <0.05 1,1-Lichloroéthane mg/kg MS * <0.005 * <0.05 1,1,1-trichloroéthane mg/kg MS * <0.10 * <0.10 1,1,2-Trichloroéthane mg/kg MS * <0.10 * <0.10 1,1,2-Dichloroéthylène mg/kg MS * <0.10 * <0.10 Trans-1,2-dichloroéthylène mg/kg MS * <0.10 * <0.10 Chlorure de vinyle mg/kg MS * <0.02 * <0.02 1,1-Dichloroéthylène mg/kg MS * <0.010 * <0.10 Bromochlorométhane mg/kg MS * <0.010 * <0.10 Bromochlorométhane mg/kg MS * <0.02 * <0.20 Dibromométhane mg/kg MS * <0.20 * <0.20 Dibromométhane mg/kg MS * <0.20 * <0.20 Dibromochlorométhane mg/kg MS * <0.20 * <0.20 1,2-Dibromoéthane mg/kg MS * <0.20 * <0.20 Dibromochlorométhane mg/kg MS * <0.20 * <0.20 1,2-Dibromoéthane mg/kg MS * <0.20 * <0.20 Trans-1,2-Dibromoéthane mg/kg MS * <0.20 *
Tetrachlorométhane mg/kg MS * <0.02
Trichloroéthylène mg/kg MS * <0.05 * <0.05 Tetrachloroéthylène mg/kg MS * <0.05 * <0.05 1,1-Dichloroéthane mg/kg MS * <0.10 * <0.10 1,2-dichloroéthane mg/kg MS * <0.05 * <0.05 1,1,1-trichloroéthane mg/kg MS * <0.05 * <0.05 1,1,1-trichloroéthane mg/kg MS * <0.10 * <0.10 1,1,2-Trichloroéthane mg/kg MS * <0.10 * <0.10 1,1,2-Trichloroéthylène mg/kg MS * <0.20 * <0.20 cis 1,2-Dichloroéthylène mg/kg MS * <0.10 * <0.10 Trans-1,2-dichloroéthylène mg/kg MS * <0.00 * <0.00 Chlorure de vinyle mg/kg MS * <0.02 * <0.02 1,1-Dichloroéthylène mg/kg MS * <0.00 * <0.10 Bromochlorométhane mg/kg MS * <0.20 * <0.20 Dibromométhane mg/kg MS * <0.20 * <0.20 Bromodichlorométhane mg/kg MS * <0.20 * <0.20 Dibromochlorométhane mg/kg MS * <0.20 * <0.20 TDibromoéthane mg/kg MS * <0.20 * <0.20 Dibromochlorométhane mg/kg MS * <0.20 * <0.20 Dibromochlorométhane mg/kg MS * <0.20 * <0.20 TDibromoéthane mg/kg MS * <0.005 * <0.05 Bromoforme (tribromométhane) mg/kg MS * <0.20 * <0.20 * <0.05 Bromoforme (tribromométhane) mg/kg MS * <0.20 * <0.20 * <0.05 * <0.05
Tetrachloroéthylène mg/kg MS * <0.05
1,1-Dichloroéthane mg/kg MS * <0.10 * <0.10 1,2-dichloroéthane mg/kg MS * <0.05 * <0.05 1,1,1-trichloroéthane mg/kg MS * <0.10 * <0.10 1,1,2-Trichloroéthane mg/kg MS * <0.10 * <0.10 1,1,2-Dichloroéthane mg/kg MS * <0.20 * <0.20 cis 1,2-Dichloroéthylène mg/kg MS * <0.10 * <0.10 Trans-1,2-dichloroéthylène mg/kg MS * <0.10 * <0.10 Chlorure de vinyle mg/kg MS * <0.02 * <0.02 1,1-Dichloroéthylène mg/kg MS * <0.010 * <0.10 Bromochlorométhane mg/kg MS * <0.20 * <0.20 Dibromométhane mg/kg MS * <0.20 * <0.20 Bromodichlorométhane mg/kg MS * <0.20 * <0.20 Bromodichlorométhane mg/kg MS * <0.20 * <0.20 Dibromochlorométhane mg/kg MS * <0.20 * <0.20 Dibromochlorométhane mg/kg MS * <0.20 * <0.20 1,2-Dibromoéthane mg/kg MS * <0.05 Bromoforme (tribromométhane) mg/kg MS * <0.20 * <0.20 SSOXU : Benzène mg/kg MS * <0.20 * <0.20 * <0.05
1,2-dichloroéthane mg/kg MS * <0.05
1,1,1-trichloroéthane mg/kg MS * <0.10
1,1,2-Trichloroéthane mg/kg MS * <0.20
cis 1,2-Dichloroéthylène mg/kg MS * <0.10
Trans-1,2-dichloroéthylène mg/kg MS * <0.10
Chlorure de vinyle mg/kg MS * <0.02
1,1-Dichloroéthylène mg/kg MS * <0.10
Bromochlorométhane mg/kg MS * <0.20
Dibromométhane mg/kg MS * <0.20
Bromodichlorométhane mg/kg MS * <0.20
Dibromochlorométhane mg/kg MS * <0.20 * <0.20 1,2-Dibromoéthane mg/kg MS * <0.05
1,2-Dibromoéthane mg/kg MS * <0.05
<0.20 Bromoforme (tribromométhane) mg/kg MS
LSOXU : Benzène mg/kg MS * <0.05
.S0Y4 : Toluène
LSOXW: Ethylbenzène mg/kg MS * <0.05
_S0Y6 : o-Xylène
_S0Y5 : m+p-Xylène
LS0IK : Somme des BTEX mg/kg MS <0.0500
LSA46 : BTEX par Head Space/GC/MS
Benzène mg/kg MS * <0.05 * <0.05
Toluène mg/kg MS * <0.05 * 0.05
Ethylbenzène mg/kg MS * <0.05 * <0.05
m+p-Xylène mg/kg MS * <0.05 * 0.23

Lixiviation

< 0.05

0.28

<0.05

< 0.05

mg/kg MS

mg/kg MS

o-Xylène

Somme des BTEX

RAPPORT D'ANALYSE

Version du : 14/11/2017 Dossier N°: 17E103456

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet: A200 - LOOS - CM CIC Nom Commande: A200 - LOOS - CM CIC

	025 SC14.1 SOL 06/11/2017 08/11/2017	026 SC14.2 SOL 06/11/2017 08/11/2017	027 SC15.1 SOL 06/11/2017 08/11/2017	028 SC15.2 SOL 06/11/2017 08/11/2017	029 SC16.1 SOL 06/11/2017 08/11/2017	030 SC16.2 SOL 06/11/2017 08/11/2017
	Li	xiviation				
% P.B. ml					* Fait * 41.1 * 240 * 24.6	
	nalvses im	médiates (sur éluat			
	ilialyses ili	illiculates (sui c iuat			
mg/kg MS mg/kg MS mg/kg MS mg/kg MS	Indices de	pollution s	ur éluat		* 8.5 20 * 120 19.9 * <2000 * <0.2 * <50 * 14.2 * 10.4 * 119 * <0.50	
mg/kg we	Máta	uv eur álu:	of .		.0.00	
	IVICIA	ux Sui Ciuc	at			
mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS					* <0.10 * <0.10 * <0.20 * 0.031 * <0.10 * <0.10 * <0.20 * <0.20	
	mI g °C µS/cm °C pluble) sur mg/kg MS % MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS	SC14.1 SOL 06/11/2017 08/11/2017 8/P.B. MI g Analyses im C pluble) sur mg/kg MS % MS Indices de mg/kg MS	SC14.1 SOL 06/11/2017 08/11/2017 08/11/2017 08/11/2017 Lixiviation % P.B. ml g Analyses immédiates s °C µS/cm °C pluble) sur mg/kg MS % MS Indices de pollution s mg/kg MS	SC14.1 SOL SOL	SC14.1 SOL 06/11/2017 08/11/2017	SC14.1 SOL O6/11/2017 O8/11/2017 O8/11/2017

RAPPORT D'ANALYSE

Version du : 14/11/2017 Dossier N°: 17E103456

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet: A200 - LOOS - CM CIC Nom Commande: A200 - LOOS - CM CIC

Référence Commande: CSSPNO172503 - BC17-5049 - KPO

N° Echantillon	025	026	027	028	029	030
Référence client :	SC14.1	SC14.2	SC15.1	SC15.2	SC16.1	SC16.2
Matrice :	SOL	SOL	SOL	SOL	SOL	SOL
Date de prélèvement :	06/11/2017	06/11/2017	06/11/2017	06/11/2017	06/11/2017	06/11/2017
Date de début d'analyse :	08/11/2017	08/11/2017	08/11/2017	08/11/2017	08/11/2017	08/11/2017

Métaux sur éluat

LSN05 : Cadmium (Cd) sur éluat	mg/kg MS			*	<0.002
LSN41 : Sélénium (Se) sur éluat	mg/kg MS			*	0.012

RAPPORT D'ANALYSE

Version du : 14/11/2017 Dossier N°: 17E103456

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

004

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet: A200 - LOOS - CM CIC Nom Commande: A200 - LOOS - CM CIC

N° Echantillon		031	032	033	034	035	036
Référence client :		SC17.1	SC17.2	SC18.1	SC18.2	SC18.3	SC19.1
Matrice :		SOL	SOL	SOL	SOL	SOL	SOL
Date de prélèvement :		06/11/2017	06/11/2017	06/11/2017	06/11/2017	06/11/2017	06/11/2017
Date de début d'analyse :		09/11/2017	08/11/2017	08/11/2017	08/11/2017	08/11/2017	08/11/2017
		Ad	ministratif				
LSOIR : Mise en réserve de l'échantillon (en option)							
	P	réparation	Physico-C	himique			
LS896 : Matière sèche	% P.B.	* 80.8		* 88.9	* 83.9		* 89.8
XXS07 : Refus Pondéral à 2 mm	% P.B.	* 10.5		* 34.0			* 40.9
XXS06 : Séchage à 40°C		* -		* -			* -
		Indice	s de pollut	ion			
LS911 : Indice phénol	mg/kg MS				<0.50		
LS917 : Cyanures totaux	mg/kg MS				* <0.5		
LS917 : Cyanures totaux	Hig/kg WS				~0.5		
			Métaux				
XXS01 : Minéralisation eau régale - Bloc chauffant		* -		* -			* -
LS865 : Arsenic (As)	mg/kg MS	* 8.78		* 14.8			* 16.4
LS870 : Cadmium (Cd)	mg/kg MS	* <0.40		* <0.40			* 0.44
LS872 : Chrome (Cr)	mg/kg MS	* 22.7		* 19.7			* 21.2
LS874 : Cuivre (Cu)	mg/kg MS	* 12.1		* 78.5			* 67.2
LS881 : Nickel (Ni)	mg/kg MS	* 18.5		* 50.9			* 43.0
LS883 : Plomb (Pb)	mg/kg MS	* 16.6		* 42.7			* 47.6
LS894 : Zinc (Zn)	mg/kg MS	* 57.4		* 102			* 89.8
LSA09 : Mercure (Hg)	mg/kg MS	* <0.10		* <0.10			* 0.25
		Hydroc	arbures to	taux			
LS919 : Hydrocarbures totaux (4 tra	anches)	-					
(C10-C40)							
Indice Hydrocarbures (C10-C40)	mg/kg MS	* <15.0		* 17.4			* 73.9
HCT (nC10 - nC16) (Calcul)	mg/kg MS	<4.00		2.15			10.4
HCT (>nC16 - nC22) (Calcul)	mg/kg MS	<4.00		4.18			23.4
HCT (>nC22 - nC30) (Calcul)	mg/kg MS	<4.00		5.41			28.1
HCT (>nC30 - nC40) (Calcul)	mg/kg MS	<4.00		5.63			12.0
LSL4E: Découpage 8 tranches HCT nC40 (%)	-CPG NC10 a						
> C10 - C12 inclus	%	-		2.54			2.29
> C12 - C16 inclus	%	-		9.85			11.84
> C16 - C20 inclus	%	-		15.24			20.39
> C20 - C24 inclus	%	-		17.77			22.69
> C24 - C28 inclus	%	_		15.93			19.58

RAPPORT D'ANALYSE

Dossier N°: 17E103456 Version du : 14/11/2017

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet: A200 - LOOS - CM CIC Nom Commande: A200 - LOOS - CM CIC

Référence Commande : CSSPNO172503 - BC17-5049 - KPO

N° Echantillon		031	032	033	034	035	036
Référence client :		SC17.1	SC17.2	SC18.1	SC18.2	SC18.3	SC19.1
Matrice :		SOL	SOL	SOL	SOL	SOL	SOL
Date de prélèvement :		06/11/2017	06/11/2017	06/11/2017	06/11/2017	06/11/2017	06/11/2017
Date de début d'analyse :		09/11/2017	08/11/2017	08/11/2017	08/11/2017	08/11/2017	08/11/2017
Bate de debat d'arialyse :					00/11/2017	00/11/2017	00/11/2017
		Hydroc	arbures to	taux			
LSL4E : Découpage 8 tranches	HCT-CPG nC10 à						
nC40 (%)							
> C28 - C32 inclus	%	-		14.30			13.17
> C32 - C36 inclus	%	-		15.54			6.83
> C36 - C40 exclus	%	-		8.84			3.21
	Hydrocarbu	ures Aroma	tiques Pol	ycycliques	(HAPs)		
LSA33 : Hydrocarbures Aroma	tiques Polycycliques						
(16 HAPs)							
Naphtalène	mg/kg MS	* <0.05		* 0.055			* 0.11
Acénaphthylène	mg/kg MS	* <0.05		* <0.05			* <0.05
Acénaphtène	mg/kg MS	* <0.05		* <0.05			* <0.05
Fluorène	mg/kg MS	* <0.05		* <0.05			* <0.05
Phénanthrène	mg/kg MS	* <0.05		* 0.17			* 0.48
Anthracène	mg/kg MS	* <0.05		* <0.05			* 0.1
Fluoranthène	mg/kg MS	* <0.05		* <0.05			* 0.35
Pyrène	mg/kg MS	* <0.05		* 0.062			* 0.34
Benzo-(a)-anthracène	mg/kg MS	* <0.05		* 0.074			* 0.3
Chrysène	mg/kg MS	* <0.05		* 0.16			* 0.26
Benzo(b)fluoranthène	mg/kg MS	* <0.05		* 0.082			* 0.42
Benzo(k)fluoranthène	mg/kg MS	* <0.05		* <0.05			* 0.13
Benzo(a)pyrène	mg/kg MS	* <0.05		* <0.05			* 0.19
Dibenzo(a,h)anthracène	mg/kg MS	* <0.05		* <0.05			* <0.05
Benzo(ghi)Pérylène	mg/kg MS	* <0.05		* <0.05			* 0.11
Indeno (1,2,3-cd) Pyrène	mg/kg MS	* <0.05		* <0.05			* 0.15
Somme des HAP	mg/kg MS	<0.05		0.6			2.9
		Comp	osés Volat	ils			
			occo rola				
LSA48 : COHV par Head Space		* .0.00		* .0.05			* -0.05
Dichlorométhane	mg/kg MS	* <0.06		* <0.05			~ <0.05
Chloroforme	mg/kg MS	* <0.06		* <0.04			* <0.05
Tetrachlorométhane	mg/kg MS	* <0.03		* <0.02			* <0.02
Trichloroéthylène	mg/kg MS	* <0.05		* <0.05			* <0.05
Tetrachloroéthylène	mg/kg MS	* <0.05		* <0.05			* <0.05
1,1-Dichloroéthane	mg/kg MS	* <0.10		* <0.10			* <0.10
1,2-dichloroéthane	mg/kg MS	* <0.05		* <0.05			* <0.05
1,1,1-trichloroéthane	mg/kg MS	* <0.10		* <0.10			* <0.10
1,1,2-Trichloroéthane	mg/kg MS	* <0.20		* <0.20			* <0.20
cis 1,2-Dichloroéthylène	mg/kg MS	* <0.10		* <0.10			* <0.10
Trana 1.2 diablaraáthulána	ma/ka MC	* ~0.10		* ~0.10			* ~0.10

< 0.10

Trans-1,2-dichloroéthylène

mg/kg MS

< 0.10

< 0.10

<0.05

Somme des BTEX

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

<0.05

RAPPORT D'ANALYSE

Version du : 14/11/2017 Dossier N°: 17E103456

mg/kg MS

<0.05

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet: A200 - LOOS - CM CIC Nom Commande: A200 - LOOS - CM CIC

Référence Commande: CSSPNO172503 - BC17-5049 - KPO

N° Echantillon Référence client :		031 SC17.1 SOL	032 SC17.2 SOL	033 SC18.1 SOL	034 SC18.2 SOL	035 SC18.3 SOL	036 SC19.1 SOL
Matrice : Date de prélèvement :		06/11/2017	06/11/2017	06/11/2017	06/11/2017	06/11/2017	06/11/2017
Date de début d'analyse :		09/11/2017	08/11/2017	08/11/2017	08/11/2017	08/11/2017	08/11/2017
		Comp	osés Volat	ils			
LSA48 : COHV par Head Space/GC/N	//S solides						
Chlorure de vinyle	mg/kg MS	* <0.02		* <0.02			* <0.02
1,1-Dichloroéthylène	mg/kg MS	* <0.10		* <0.10			* <0.10
Bromochlorométhane	mg/kg MS	* <0.20		* <0.20			* <0.20
Dibromométhane	mg/kg MS	* <0.20		* <0.20			* <0.20
Bromodichlorométhane	mg/kg MS	* <0.20		* <0.20			* <0.20
Dibromochlorométhane	mg/kg MS	* <0.20		* <0.20			* <0.20
1,2-Dibromoéthane	mg/kg MS	* <0.05		* <0.05			* <0.05
Bromoforme (tribromométhane)	mg/kg MS	* <0.20		* <0.20			* <0.20
LSA46: BTEX par Head Space/GC/N	IS						
Benzène	mg/kg MS	* <0.05		* <0.05			* <0.05
Toluène	mg/kg MS	* <0.05		* <0.05			* <0.05
Ethylbenzène	mg/kg MS	* <0.05		* <0.05			* <0.05
m+p-Xylène	mg/kg MS	* <0.05		* <0.05			* <0.05
o-Xylène	mg/kg MS	* <0.05		* <0.05			* <0.05

ACCREDITATION N° 1- 1488 Site de saverne

Portée disponible sur www.cofrac.fr

RAPPORT D'ANALYSE

Version du : 14/11/2017 Dossier N°: 17E103456

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet: A200 - LOOS - CM CIC Nom Commande: A200 - LOOS - CM CIC

Référence client : Matrice : Date de prélèvement : Date de début d'analyse :		037 SC19.2 SOL 06/11/2017 08/11/2017	06/	038 6C20.1 SOL /11/2017 /11/2017	039 SC20.2 SOL 06/11/2017 08/11/2017	06	040 SC21.1 SOL /11/2017 /11/2017	041 SC21.2 SOL 06/11/2017 08/11/2017	06	042 SC22.1 SOL 7/11/2017	
		Ad	min	istratif							
LSOIR : Mise en réserve de l'échantillon (en option)									П		
Préparation Physico-Chimique											
LS896 : Matière sèche	% P.B.		*	89.3	-	*	89.2		*	96.2	
XXS07 : Refus Pondéral à 2 mm	% P.B.		*	56.1		*	10.9		*	64.6	
XXS06 : Séchage à 40°C	70 T .B.		*	-		*	-		*	-	
		Indice	s de	polluti	on						
LS08X : Carbone Organique Total (COT)	mg/kg MS		*	21000		*	7980		*	92600	
Métaux											
XXS01 : Minéralisation eau régale - Bloc chauffant			*	-		*	-		*	-	
LS863 : Antimoine (Sb)	mg/kg MS		*	<1.00		*	<1.00		*	<1.00	
LS865 : Arsenic (As)	mg/kg MS		*	11.9		*	5.54		*	10.9	
LS866 : Baryum (Ba)	mg/kg MS		*	90.1		*	56.5		*	131	
LS870 : Cadmium (Cd)	mg/kg MS		*	<0.40		*	<0.40		*	<0.40	
LS872 : Chrome (Cr)	mg/kg MS		*	27.4		*	20.6		*	15.2	
LS874 : Cuivre (Cu)	mg/kg MS		*	48.2		*	6.98		*	42.9	
LS880 : Molybdène (Mo)	mg/kg MS			<1.00			<1.00			1.06	
LS881 : Nickel (Ni)	mg/kg MS		*	20.0		*	15.1		*	29.0	
LS883 : Plomb (Pb)	mg/kg MS		*	33.3		*	10.5		*	28.7	
LS885 : Sélénium (Se)	mg/kg MS			<1.00			<1.00			<1.00	
LS894 : Zinc (Zn)	mg/kg MS		*	385		*	34.4		*	309	
LSA09 : Mercure (Hg)	mg/kg MS		*	<0.10		*	<0.10		*	0.11	
		Hydroc	arb	ures tot	aux						
LS919 : Hydrocarbures totaux (4 tran (C10-C40)	•										
Indice Hydrocarbures (C10-C40)	mg/kg MS		*	50.2		*	<15.0		*	<15.0	
HCT (nC10 - nC16) (Calcul)	mg/kg MS			5.74			<4.00			<4.00 <4.00	
HCT (>nC16 - nC22) (Calcul) HCT (>nC22 - nC30) (Calcul)	mg/kg MS mg/kg MS			9.78 14.2			<4.00 <4.00			<4.00 <4.00	
HCT (>nC30 - nC40) (Calcul)	mg/kg MS			20.4			<4.00 <4.00			<4.00	
		ıres Aroma				4					

042

N° Echantillon

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

039

040

041

RAPPORT D'ANALYSE

038

Version du : 14/11/2017 Dossier N°: 17E103456

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

037

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet: A200 - LOOS - CM CIC Nom Commande: A200 - LOOS - CM CIC

Référence Commande: CSSPNO172503 - BC17-5049 - KPO

Référence client :		SC19.2		20.1	SC20.2		C21.1	SC21.2		SC22.1	
Matrice:		SOL		SOL	SOL		SOL	SOL		SOL	
Date de prélèvement :		06/11/2017		1/2017	06/11/2017		11/2017	06/11/2017		/11/2017	
Date de début d'analyse :		08/11/2017	09/1	1/2017	08/11/2017	09/	11/2017	08/11/2017	09	9/11/2017	
	Hydrocarbu	ıres Aroma	tiqu	es Pol	ycycliques	(HA	APs)				
LSA33: Hydrocarbures Aromatique	ues Polycycliques										
(16 HAPs) Naphtalène	mg/kg MS		* -	<0.05		*	<0.05		*	<0.05	
Acénaphthylène	mg/kg MS			<0.05		*	<0.05		*	<0.05	
Acénaphtène	mg/kg MS			<0.05		*	<0.05		*	<0.05	
Fluorène	mg/kg MS			<0.05		*	<0.05		*	<0.05	
Phénanthrène	mg/kg MS			<0.05		*	<0.05		*	0.26	
Anthracène	mg/kg MS		* <	<0.05		*	<0.05		*	0.059	
Fluoranthène	mg/kg MS		* <	<0.05		*	<0.05		*	0.35	
Pyrène	mg/kg MS		* <	<0.05		*	<0.05		*	0.29	
Benzo-(a)-anthracène	mg/kg MS		* <	<0.05		*	<0.05		*	0.14	
Chrysène	mg/kg MS		* <	<0.05		*	<0.05		*	0.19	
Benzo(b)fluoranthène	mg/kg MS		* <	<0.05		*	<0.05		*	0.25	
Benzo(k)fluoranthène	mg/kg MS		* <	<0.05		*	<0.05		*	0.089	
Benzo(a)pyrène	mg/kg MS		* <	<0.05		*	<0.05		*	0.14	
Dibenzo(a,h)anthracène	mg/kg MS		* <	<0.05		*	<0.05		*	0.053	
Benzo(ghi)Pérylène	mg/kg MS		* <	<0.05		*	<0.05		*	0.073	
Indeno (1,2,3-cd) Pyrène	mg/kg MS			<0.05		*	<0.05		*	0.084	
Somme des HAP	mg/kg MS		<	<0.05			<0.05			2.0	
	Polychlorobiphényles (PCBs)										
LSA42 : PCB congénères régleme	entaires (7)										
PCB 28	mg/kg MS		* <	<0.01		*	<0.01		*	<0.01	
PCB 52	mg/kg MS		* <	<0.01		*	<0.01		*	<0.01	
PCB 101	mg/kg MS		* <	<0.01		*	<0.01		*	<0.01	
PCB 118	mg/kg MS		* <	<0.01		*	<0.01		*	<0.01	
PCB 138	mg/kg MS		*	0.01		*	<0.01		*	<0.01	
PCB 153	mg/kg MS		*	0.01		*	<0.01		*	<0.01	
PCB 180	mg/kg MS			0.01		*	<0.01		*	<0.01	
SOMME PCB (7)	mg/kg MS			0.03			<0.01			<0.01	
		Comp	osés	s Volat	ils						
LS0XU : Benzène	mg/kg MS		* <	<0.05		*	<0.05		*	<0.05	
LS0Y4 : Toluène	mg/kg MS		* <	<0.05		*	<0.05		*	<0.05	
LS0XW : Ethylbenzène	mg/kg MS		* <	<0.05		*	<0.05		*	<0.05	
LS0Y6 : o-Xylène	mg/kg MS		* <	<0.05		*	<0.05		*	<0.05	
LS0Y5 : m+p-Xylène	mg/kg MS		* <	<0.05		*	<0.05		*	<0.05	
LS0IK : Somme des BTEX	mg/kg MS		<(0.0500			<0.0500			<0.0500	

www.cofrac.fr

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

Version du : 14/11/2017 Dossier N°: 17E103456

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet: A200 - LOOS - CM CIC Nom Commande: A200 - LOOS - CM CIC

N° Echantillon Référence client : Matrice : Date de prélèvement : Date de début d'analyse :		037 SC19.2 SOL 06/11/2017 08/11/2017	06	038 SC20.1 SOL 5/11/2017 9/11/2017 viation	039 SC20.2 SOL 06/11/2017 08/11/2017	040 SC21.1 SOL 06/11/2017 09/11/2017	041 SC21.2 SOL 06/11/2017 08/11/2017	SC: Sc: 06/11	42 22.1 OL /2017 1/2017
LSA36 : Lixiviation 1x24 heures Lixiviation 1x24 heures Refus pondéral à 4 mm XXS4D : Pesée échantillon lixiviation Volume Masse	% P.B. ml g		* * * *	Fait 75.4 240 24.4		* Fait * 3.5 * 240 * 24.7		* 3	Fait 39.3 240 23.8
	A	nalyses im	mé	édiates s	sur éluat				
LSQ13: Mesure du pH sur éluat pH (Potentiel d'Hydrogène) Température de mesure du pH LSQ02: Conductivité à 25°C sur éluat Conductivité corrigée automatiquement à 25°C Température de mesure de la conductivité LSM46: Résidu sec à 105°C (Fraction s éluat Résidus secs à 105°C Résidus secs à 105°C (calcul) LSM68: Carbone Organique par oxydation (COT) sur éluat LS04Y: Chlorures sur éluat LSN71: Fluorures sur éluat LS04Z: Sulfate (SO4) sur éluat LSM90: Indice phénol sur éluat	mg/kg MS % MS	Indices de	* * pol * * * * * * * * * * * * *	9.7 19 2280 19.4 25200 2.5 Solution S <50 22.6 <5.00 14300 <0.50	ur éluat	* 8.1 19 * 84 19.0 * 7580 * 0.8 * <51 * 49.0 * 11.1 * 272 * <0.51		*	8.3 18 74 17.8 2000 <0.2 <51 12.9 5.13 31.3 0.51
		Méta	ux	sur élua	at				
LSM04: Arsenic (As) sur éluat LSM05: Baryum (Ba) sur éluat LSM11: Chrome (Cr) sur éluat LSM13: Cuivre (Cu) sur éluat LSN26: Molybdène (Mo) sur éluat LSM20: Nickel (Ni) sur éluat LSM22: Plomb (Pb) sur éluat LSM35: Zinc (Zn) sur éluat LS04W: Mercure (Hg) sur éluat LSM97: Antimoine (Sb) sur éluat	mg/kg MS		* * * * * * * * *	<0.20 0.38 <0.10 0.39 0.029 <0.10 0.14 <0.20 <0.001 0.009		* <0.20 * 0.63 * <0.10 * <0.20 * 0.040 * 0.14 * <0.10 * <0.001 * <0.001		* 0 * < * < * 0 * < * < * < * <	0.20 0.20 0.10 0.20 .019 0.10 0.10 0.35 0.001

RAPPORT D'ANALYSE

Dossier N°: 17E103456 Version du : 14/11/2017

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet : A200 - LOOS - CM CIC Nom Commande : A200 - LOOS - CM CIC

N° Echantillon	037	038	039	040	041	042
Référence client :	SC19.2	SC20.1	SC20.2	SC21.1	SC21.2	SC22.1
Matrice :	SOL	SOL	SOL	SOL	SOL	SOL
Date de prélèvement :	06/11/2017	06/11/2017	06/11/2017	06/11/2017	06/11/2017	06/11/2017
Date de début d'analyse :	08/11/2017	09/11/2017	08/11/2017	09/11/2017	08/11/2017	09/11/2017

		Méta	ux :	sur élu	at				
LSN05 : Cadmium (Cd) sur éluat	mg/kg MS		*	0.006		*	<0.002	*	<0.002
LSN41 : Sélénium (Se) sur éluat	mg/kg MS		*	<0.01		*	<0.01	*	<0.01

RAPPORT D'ANALYSE

Version du : 14/11/2017 Dossier N°: 17E103456

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

0.10

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet: A200 - LOOS - CM CIC

Nom Commande: A200 - LOOS - CM CIC

N° Echantillon Référence client : Matrice : Date de prélèvement : Date de début d'analyse : LSOIR : Mise en réserve de l'échantillon (en option)		043 SC22.2 SOL 06/11/2017 09/11/2017 Ad	044 SC23.1 SOL 06/11/2017 09/11/2017 ministratif	045 SC23.2 SOL 06/11/2017 08/11/2017	046 SC23.3 SOL 06/11/2017 08/11/2017	047 SC24.1 SOL 06/11/2017 09/11/2017	048 SC24.2 SOL 06/11/2017 08/11/2017	
Préparation Physico-Chimique								
LS896 : Matière sèche XXS07 : Refus Pondéral à 2 mm XXS06 : Séchage à 40°C	% P.B. % P.B.	* 86.0	* 91.1 * 26.4 * -			* 91.0 * 6.28 * -		
		Indice	s de pollut	ion				
LS911 : Indice phénol LS917 : Cyanures totaux LS08X : Carbone Organique Total (COT)	mg/kg MS mg/kg MS mg/kg MS	<0.50 * <0.5	* 28700			* 142000		
Métaux								
XXS01: Minéralisation eau régale - Bloc chauffant LS863: Antimoine (Sb) LS865: Arsenic (As) LS866: Baryum (Ba) LS870: Cadmium (Cd) LS872: Chrome (Cr) LS874: Cuivre (Cu) LS880: Molybdène (Mo) LS881: Nickel (Ni) LS883: Plomb (Pb) LS885: Sélénium (Se) LS894: Zinc (Zn) LSA09: Mercure (Hg)	mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS	Hydroc	* 8.35 * 11.4 * 126 * <0.40 * 23.3 * 22.4 <1.00 * 21.6 * 45.2 <1.00 * 192 * <0.10 arbures to	tauv		* -1.00 * 14.3 * 118 * <0.40 * 22.5 * 63.4 1.28 * 49.8 * 39.8 <1.00 * 119 * 0.11		
LS919 : Hydrocarbures totaux (4 tran	rhes)	riyaroc	arbaros to	MUA				
(C10-C40) Indice Hydrocarbures (C10-C40) HCT (nC10 - nC16) (Calcul) HCT (>nC16 - nC22) (Calcul) HCT (>nC22 - nC30) (Calcul) HCT (>nC30 - nC40) (Calcul)	mg/kg MS mg/kg MS mg/kg MS mg/kg MS mg/kg MS		* 36.3 3.89 4.07 8.99 19.4			* 24.9 7.02 5.39 7.47 4.99		

048

047

046

N° Echantillon

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

045

RAPPORT D'ANALYSE

044

Dossier N°: 17E103456 Version du : 14/11/2017

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

043

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet : A200 - LOOS - CM CIC Nom Commande : A200 - LOOS - CM CIC

N Lonarillion		040	044	0-10	040	041	040
Référence client :		SC22.2	SC23.1	SC23.2	SC23.3	SC24.1	SC24.2
Matrice :		SOL	SOL	SOL	SOL	SOL	SOL
Date de prélèvement :		06/11/2017	06/11/2017	06/11/2017	06/11/2017	06/11/2017	06/11/2017
Date de début d'analyse :		09/11/2017	09/11/2017	08/11/2017	08/11/2017	09/11/2017	08/11/2017
	Hydrocarbu		ntiques Pol	vevelianes	(HAPe)		
	_	ai es Ai Oilla	itiques Foi	ycycnques	(IIAFS)		
LSA33 : Hydrocarbures Aromatic (16 HAPs)	ques Polycycliques						
Naphtalène	mg/kg MS		* <0.05			* <0.05	
Acénaphthylène	mg/kg MS		* <0.05			* <0.05	
Acénaphtène	mg/kg MS		* <0.05			* <0.05	
Fluorène	mg/kg MS		* <0.05			* <0.05	
Phénanthrène	mg/kg MS		* 0.25			* 0.13	
Anthracène	mg/kg MS		* 0.081			* <0.05	
Fluoranthène	mg/kg MS		* 0.46			* 0.14	
Pyrène	mg/kg MS		* 0.41			* 0.12	
Benzo-(a)-anthracène	mg/kg MS		* 0.2			* 0.1	
Chrysène	mg/kg MS		* 0.27			* 0.14	
Benzo(b)fluoranthène	mg/kg MS		* 0.56			* 0.17	
Benzo(k)fluoranthène	mg/kg MS		* 0.17			* 0.063	
Benzo(a)pyrène	mg/kg MS		* 0.29			* 0.085	
Dibenzo(a,h)anthracène	mg/kg MS		* 0.12			* <0.05	
Benzo(ghi)Pérylène	mg/kg MS		* 0.16			* <0.05	
Indeno (1,2,3-cd) Pyrène	mg/kg MS		* 0.23			* <0.05	
Somme des HAP	mg/kg MS		3.2			0.95	
	F	Polychlorol	biphényles	(PCBs)			
LSA42 : PCB congénères réglem	entaires (7)						
PCB 28	mg/kg MS		* <0.01			* <0.01	
PCB 52	mg/kg MS		* <0.01			* <0.01	
PCB 101	mg/kg MS		* 0.01			* <0.01	
PCB 118	mg/kg MS		* <0.01			* <0.01	
PCB 138	mg/kg MS		* 0.04			* <0.01	
PCB 153	mg/kg MS		* 0.03			* <0.01	
PCB 180	mg/kg MS		* 0.02			* <0.01	
SOMME PCB (7)	mg/kg MS		0.10			<0.01	
Composés Volatils							
LS0XU : Benzène	mg/kg MS		* <0.05			* <0.05	
LS0Y4 : Toluène	mg/kg MS		* <0.05			* <0.05	
LS0XW : Ethylbenzène	mg/kg MS		* <0.05			* <0.05	
LS0Y6 : o-Xylène	mg/kg MS		* <0.05			* <0.05	
LS0Y5 : m+p-Xylène	mg/kg MS		* <0.05			* <0.05	
LS0IK : Somme des BTEX	mg/kg MS		<0.0500			<0.0500	
LOUIN . SUITING UPS DIEA	mg/kg M3		-0.0000			-0.0000	

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

Version du : 14/11/2017 Dossier N°: 17E103456

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet: A200 - LOOS - CM CIC Nom Commande: A200 - LOOS - CM CIC

N° Echantillon Référence client : Matrice : Date de prélèvement : Date de début d'analyse :		043 SC22.2 SOL 06/11/2017 09/11/2017	06/	044 SC23.1 SOL /11/2017 /11/2017	045 SC23.2 SOL 06/11/2017 08/11/2017	046 SC23.3 SOL 06/11/2017 08/11/2017	06/	047 SC24.1 SOL /11/2017 /11/2017	048 SC24.2 SOL 06/11/2017 08/11/2017
		Li	ixiv	iation					
LSA36 : Lixiviation 1x24 heures Lixiviation 1x24 heures Refus pondéral à 4 mm XXS4D : Pesée échantillon lixiviation Volume	% P.B.		* *	Fait 26.5			* *	Fait 69.9	
Masse	g			24.1			*	24.00	
	Δ	nalyses im	nmé	diates	sur éluat				
LSQ13: Mesure du pH sur éluat pH (Potentiel d'Hydrogène) Température de mesure du pH LSQ02: Conductivité à 25°C sur éluat Conductivité corrigée automatiquement à 25°C Température de mesure de la conductivité LSM46: Résidu sec à 105°C (Fraction s'éluat Résidus secs à 105°C (calcul) LSM68: Carbone Organique par oxydation (COT) sur éluat LS04Y: Chlorures sur éluat LSN71: Fluorures sur éluat	mg/kg MS % MS	Indices de	* * poll * *	7.1 18 131 18.4 2440 0.2 Jution s 120 13.7 13.4	ur éluat			8.5 18 579 17.8 4400 0.4 <50 <10.0 8.28	
LS04Z : Sulfate (SO4) sur éluat	mg/kg MS		*	123			*	2560	
LSM90 : Indice phénol sur éluat	mg/kg MS		*	<0.50			*	<0.50	
		Méta	ux :	sur élua	at				
LSM04 : Arsenic (As) sur éluat LSM05 : Baryum (Ba) sur éluat LSM11 : Chrome (Cr) sur éluat LSM13 : Cuivre (Cu) sur éluat LSN26 : Molybdène (Mo) sur éluat LSM20 : Nickel (Ni) sur éluat LSM22 : Plomb (Pb) sur éluat LSM35 : Zinc (Zn) sur éluat LS04W : Mercure (Hg) sur éluat LSM97 : Antimoine (Sb) sur éluat	mg/kg MS		* * * * * * *	<0.20 0.59 0.12 <0.20 0.090 <0.10 0.17 0.52 <0.001 0.15			* * * * * * * * *	<0.20 0.20 <0.10 <0.20 0.027 <0.10 <0.10 <0.010 <0.20 <0.001	

RAPPORT D'ANALYSE

Dossier N°: 17E103456 Version du : 14/11/2017

N° de rapport d'analyse : AR-17-LK-127541-01 Date de réception : 08/11/2017

Référence Dossier : N° Projet : CSSPNO172503 - BC17-5049 - KPO

Nom Projet : A200 - LOOS - CM CIC Nom Commande : A200 - LOOS - CM CIC

Référence Commande: CSSPNO172503 - BC17-5049 - KPO

043 044 045 047 N° Echantillon 046 048 SC22.2 SC23.2 SC23.3 SC24.1 SC24.2 SC23 1 Référence client : SOL SOL Matrice: SOL SOL SOL SOL Date de prélèvement : 06/11/2017 06/11/2017 06/11/2017 06/11/2017 06/11/2017 06/11/2017 Date de début d'analyse : 09/11/2017 09/11/2017 08/11/2017 08/11/2017 08/11/2017 09/11/2017

Métaux sur éluat

LSN05 : Cadmium (Cd) sur éluat	mg/kg MS	* <0.002	* <0.002
LSN41 · Sélénium (Se) sur éluat	mg/kg MS	* 0.017	* 0.013

D : détecté / ND : non détecté

Observations	N° Ech	Réf client
		SC1.1 / SC2.1 / SC6.1 / SC11.1 / SC12.1 / SC16.1 / SC20.1 / SC22.1 / SC23.1 /

La reproduction de ce document n'est autorisée que sous sa forme intégrale. Il comporte 44 page(s). Le présent rapport ne concerne que les objets soumis à l'essai.

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

L'information relative au seuil de détection d'un paramètre n'est pas couverte par l'accréditation Cofrac.

Les résultats précédés du signe < correspondent aux limites de quantification, elles sont la responsabilité du laboratoire et fonction de la matrice.

Tous les éléments de traçabilité sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé par le ministre chargé de l'environnement - se reporter à la liste des laboratoires sur le site internet de gestion des agréments du ministère chargé de l'environnement : http://www.labeau.ecologie.gouv.fr

Laboratoire agréé pour la réalisation des prélèvements et des analyses terrains et/ou des analyses des paramètres du contrôle sanitaire des eaux – portée détaillée de l'agrément disponible sur demande.

Laboratoire agréé par le ministre chargé des installations classées conformément à l'arrêté du 11 Mars 2010. Mention des types d'analyses pour lesquels l'agrément a été délivré sur : www.eurofins.fr ou disponible sur demande.

Gilles Lacroix

Coordinateur Projets Clients

Annexe technique

N° de rapport d'analyse :AR-17-LK-127541-01 **Dossier N°: 17E103456**

Emetteur: Commande EOL: 006-10514-286400

Nom projet: A200 - LOOS - CM CIC Référence commande : CSSPNO172503 - BC17-5049 -

KPO

Sol

LSGAW Mercure (Hg) sur était CP/MS - NF EN ISO 17284-2 / NF EN 16192 0.001 mg/kg MS			ī		Τ	T
ESPAY Mercure (Hg) sur étual CPAMS - NF EN ISO 17284 2 / NF EN 16192 0.001 mg/kg MS Eurofins Analyse po Pray 10 mg/kg MS 10	Code	Analyse	Principe et référence de la méthode	LQI	Unité	Prestation réalisée sur le site de :
Spectrophotometries (UV/NIS) [Spectrometries valible automatisée] - NF EN 16192 - NF ISO 19593-1	LS04W	Mercure (Hg) sur éluat	ICP/MS - NF EN ISO 17294-2 / NF EN 16192	0.001	mg/kg MS	Eurofins Analyse pour l'Environnement France
ESPATE Sulfate (SO4) sur divate S08	LS04Y	Chlorures sur éluat		10	mg/kg MS	
LSOIK Somme des BTEX	LS04Z	Sulfate (SO4) sur éluat	<u>-</u> '	50	mg/kg MS	1
LSOIR Milse en réserve de l'échantilion (en option) HS - GC/MS [Extraction méthanolique] - NF EN ISO 0.05 mg/kg MS	LS08X	Carbone Organique Total (COT)	Combustion [sèche] - NF ISO 10694	1000	mg/kg MS	1
ESX Ethylbenzéne	LS0IK	Somme des BTEX	Calcul - Calcul		mg/kg MS	1
LSOW Ethylbenzène LSOY Toluène LSOY Toluène	LS0IR	Mise en réserve de l'échantillon (en option)				1
CS0Y4 Toluène	LS0XU	Benzène		0.05	mg/kg MS	
LS0Y5 mrp-Xylene	LS0XW	Ethylbenzène	<u>-</u> ' ' '	0.05	mg/kg MS	1
LS2FE 2.4-Dimethylphenol	LS0Y4	Toluène	-	0.05	mg/kg MS	1
C2EP	LS0Y5	m+p-Xylène	-	0.05	mg/kg MS	1
Interne	LS0Y6	o-Xylène	-	0.05	mg/kg MS	1
Care	LS2EF	2,4-Diméthylphénol		0.025	mg/kg MS	1
S2EI 3.4-Dimethylphenol 0.03 mg/kg MS 0.025 mg/kg	LS2EG	2,5-Diméthylphénol	-	0.02	mg/kg MS	1
LSZEJ	LS2EH	2,6-Diméthylphénol	-	0.025	mg/kg MS	1
Comparison	LS2EI	3,4-Diméthylphénol	-	0.03	mg/kg MS	1
LSZEL	LS2EJ	4-Ethylphénol (p-Ethylphénol)	-	0.025	mg/kg MS	1
LSZEM Pentachlorophénol (PCP) 0.02 mg/kg MS 0.15 mg/kg MS 0.02 mg/kg	LS2EK	3-Ethylphénol (m-Ethylphénol)	-	0.02	mg/kg MS	1
CSZEN Phénol D.15 mg/kg MS	LS2EL	4-Méthylphénol (p-crésol)	-	0.025	mg/kg MS	1
CSZEP 2,3,4-Trichlorophénol 0.02 mg/kg MS	LS2EM	Pentachlorophénol (PCP)	-	0.02	mg/kg MS	1
LSZEQ 2,3,5-Trichlorophénol 0.02 mg/kg MS LS2EN	Phénol	-	0.15	mg/kg MS	1	
S2ER 2,3.6-Trichlorophénol 0.02 mg/kg MS	LS2EP	2,3,4-Trichlorophénol	-	0.02	mg/kg MS	1
LSZES 2,3-Dichlorophénol 0.02 mg/kg MS	LS2EQ	2,3,5-Trichlorophénol	-	0.02	mg/kg MS	1
Care	LS2ER	2,3,6-Trichlorophénol	-	0.02	mg/kg MS	1
LSZEU 2-Chlorophénol 0.02 mg/kg MS 0.025 mg/kg MS	LS2ES	2,3-Dichlorophénol	-	0.02	mg/kg MS	1
LSZEV 3,4-Dichlorophénol 0.02 mg/kg MS 0.03 mg/kg MS 0.04 mg/kg MS 0.05 mg/kg MS 0.05 mg/kg MS 0.05 mg/kg MS 0.05 mg/kg MS 0.02 mg/kg	LS2ET	2,4,6-Trichlorophénol	-	0.02	mg/kg MS	1
LSZEW 3,5-Dichlorophénol 0.02 mg/kg MS 0.025 mg/kg	LS2EU	2-Chlorophénol	-	0.02	mg/kg MS	1
LS2EY 3-Chlorophénol LS2EZ 4-Chlorophénol LS2F0 2,3,5,6-Tétrachlorophénol LS2F1 2,6-Dichlorophénol LS2F2 2,4 + 2,5 - Dichlorophénol LS2F3 2,4,5-Trichlorophénol LS2F4 3,4,5-Trichlorophénol LS2F5 2,3,4,6-Tetrachlorophénol LS2F5 2,3,4,6-Tetrachlorophénol (TeCP) LS2F6 2,3,4,5-Tetrachlorophénol LS2F7 2-Méthylphénol (o-crésol) LS2F8 3-Méthylphénol (m-crésol)	LS2EV	3,4-Dichlorophénol	-	0.02	mg/kg MS	1
LSZEZ 4-Chlorophénol 0.02 mg/kg MS	LS2EW	3,5-Dichlorophénol	-	0.02	mg/kg MS	1
LS2F0	LS2EY	3-Chlorophénol	-	0.02	mg/kg MS	1
LS2F1	LS2EZ	4-Chlorophénol	-	0.02	mg/kg MS	1
LS2F2 2,4 + 2,5 - Dichlorophénol 0.05 mg/kg MS	LS2F0	2,3,5,6-Tétrachlorophénol	-	0.02	mg/kg MS	1
LS2F3 2,4,5-Trichlorophénol 0.02 mg/kg MS LS2F4 3,4,5-Trichlorophénol 0.02 mg/kg MS LS2F5 2,3,4,6-Tetrachlorophénol (TeCP) 0.02 mg/kg MS LS2F6 2,3,4,5-Tetrachlorophénol 0.02 mg/kg MS LS2F7 2-Méthylphénol (o-crésol) 0.02 mg/kg MS LS2F8 3-Méthylphénol (m-crésol) 0.025 mg/kg MS	LS2F1	2,6-Dichlorophénol	-	0.02	mg/kg MS	1
LS2F4 3,4,5-Trichlorophénol 0.02 mg/kg MS LS2F5 2,3,4,6-Tetrachlorophénol (TeCP) 0.02 mg/kg MS LS2F6 2,3,4,5-Tetrachlorophénol 0.02 mg/kg MS LS2F7 2-Méthylphénol (o-crésol) 0.02 mg/kg MS LS2F8 3-Méthylphénol (m-crésol) 0.025 mg/kg MS	LS2F2	2,4 + 2,5 - Dichlorophénol	-	0.05	mg/kg MS	1
LS2F5	LS2F3	2,4,5-Trichlorophénol	-	0.02	mg/kg MS	1
LS2F5 2,3,4,6-Tetrachlorophénol (TeCP) 0.02 mg/kg MS LS2F6 2,3,4,5-Tetrachlorophénol 0.02 mg/kg MS LS2F7 2-Méthylphénol (o-crésol) 0.02 mg/kg MS LS2F8 3-Méthylphénol (m-crésol) 0.025 mg/kg MS	LS2F4	3,4,5-Trichlorophénol	-	0.02	mg/kg MS	1
LS2F6 2,3,4,5-Tetrachlorophénol 0.02 mg/kg MS LS2F7 2-Méthylphénol (o-crésol) 0.02 mg/kg MS LS2F8 3-Méthylphénol (m-crésol) 0.025 mg/kg MS		•	-	0.02		1
LS2F8 3-Méthylphénol (m-crésol) 0.025 mg/kg MS	LS2F6	2,3,4,5-Tetrachlorophénol	-	0.02	mg/kg MS	1
LS2F8 3-Méthylphénol (m-crésol) 0.025 mg/kg MS	LS2F7	2-Méthylphénol (o-crésol)	-	0.02		1
		<u> </u>	-	0.025		1
LS2G9 4-chloro-3-methylphénol 0.02 mg/kg MS		4-chloro-3-methylphénol	-	0.02	mg/kg MS	1
LS863 Antimoine (Sb) ICP/AES [Minéralisation à l'eau régale] - NF EN 1 mg/kg MS			ICP/AES [Minéralisation à l'eau régale] - NF EN	1		1

Tél 03 88 911 911 - fax 03 88 916 531 - site web : www.eurofins.fr/env SAS au capital de 1 632 800 € - APE 7120B - RCS SAVERNE 422 998 971

Annexe technique

N° de rapport d'analyse :AR-17-LK-127541-01 **Dossier N°: 17E103456**

Emetteur: Commande EOL: 006-10514-286400

Référence commande : CSSPNO172503 - BC17-5049 -Nom projet: A200 - LOOS - CM CIC

KPO

Code	Analyse	Principe et référence de la méthode	LQI	Unité	Prestation réalisée sur le site de :
LS865	Arsenic (As)	ICP/AES [Minéralisation à l'eau régale] - NF EN ISO 11885 - NF EN 13346 Méthode B	1	mg/kg MS	ue.
LS866	Baryum (Ba)	ICP/AES [Minéralisation à l'eau régale] - NF EN ISO 11885 - NF EN 13346 Méthode B (Sol)	1	mg/kg MS	
LS870	Cadmium (Cd)	ICP/AES [Minéralisation à l'eau régale] - NF EN ISO 11885 - NF EN 13346 Méthode B	0.4	mg/kg MS	
LS872	Chrome (Cr)	[5	mg/kg MS	
LS874	Cuivre (Cu)	[5	mg/kg MS	
LS880	Molybdène (Mo)	1	1	mg/kg MS	1
LS881	Nickel (Ni)	1	1	mg/kg MS	1
LS883	Plomb (Pb)	il i	5	mg/kg MS	1
LS885	Sélénium (Se)	1	1	mg/kg MS	1
LS894	Zinc (Zn)	1	5	mg/kg MS	1
LS896	Matière sèche	Gravimétrie - NF ISO 11465	0.1	% P.B.	1
LS911	Indice phénol	Flux continu [Flux Continu] - NF EN ISO 14402 (adaptée sur sédiment,boue)	0.5	mg/kg MS	
LS917	Cyanures totaux	Spectroscopie (FIA) [Extraction basique et dosage par flux continu] - NF EN ISO 17380 + NF EN ISO 14403-2 (adaptée en BO	0.5	mg/kg MS	
LS919	Hydrocarbures totaux (4 tranches) (C10-C40) Indice Hydrocarbures (C10-C40)	GC/FID [Extraction Hexane / Acétone] - NF EN ISO 16703 (Sols) - NF EN 14039 (Boue, Sédiments)	15	mg/kg MS	
	HCT (nC10 - nC16) (Calcul)		15	mg/kg MS	
	, , , ,				
	HCT (>nC16 - nC22) (Calcul)			mg/kg MS	
	HCT (>nC22 - nC30) (Calcul)			mg/kg MS	
	HCT (>nC30 - nC40) (Calcul)			mg/kg MS	_
LSA09	Mercure (Hg)	SFA / vapeurs froides (CV-AAS) [Minéralisation à l'eau régale] - NF EN 13346 Méthode B (Sol) - NF ISO 16772 (Sol) - Adaptée de NF ISO 16772 (Boue, Sédiments)	0.1	mg/kg MS	
LSA33	Hydrocarbures Aromatiques Polycycliques (16 HAPs)	GC/MS/MS [Extraction Hexane / Acétone] - NF ISO 18287 (Sols) - XP X 33-012 (boue, sédiment)			
	Naphtalène	(,	0.05	mg/kg MS	
	Acénaphthylène		0.05	mg/kg MS	
	Acénaphtène		0.05	mg/kg MS	
	Fluorène		0.05	mg/kg MS	
	Phénanthrène		0.05	mg/kg MS	
	Anthracène		0.05	mg/kg MS	
	Fluoranthène		0.05	mg/kg MS	
	Pyrène		0.05	mg/kg MS	
	Benzo-(a)-anthracène		0.05	mg/kg MS	
	Chrysène		0.05	mg/kg MS	
	Benzo(b)fluoranthène		0.05	mg/kg MS	
	Benzo(k)fluoranthène		0.05	mg/kg MS	
	Benzo(a)pyrène		0.05	mg/kg MS	
	Dibenzo(a,h)anthracène		0.05	mg/kg MS	
	Benzo(ghi)Pérylène		0.05	mg/kg MS	
	Indeno (1,2,3-cd) Pyrène		0.05	mg/kg MS	
	Somme des HAP			mg/kg MS	
					4

Annexe technique

N° de rapport d'analyse :AR-17-LK-127541-01 **Dossier N°: 17E103456**

Emetteur: Commande EOL: 006-10514-286400

Référence commande : CSSPNO172503 - BC17-5049 -Nom projet: A200 - LOOS - CM CIC

KPO

Code	Analyse	Principe et référence de la méthode	LQI	Unité	Prestation réalisée sur le site de :
LSA36	Lixiviation 1x24 heures	Lixiviation [Ratio L/S = 10 l/kg - Broyage par concasseur à mâchoires] - NF EN 12457-2			
	Lixiviation 1x24 heures				
	Refus pondéral à 4 mm		0.1	% P.B.	
LSA42	PCB congénères réglementaires (7)	GC/MS/MS [Extraction Hexane / Acétone] - NF EN 16167 (Sols) - XP X 33-012 (boue, sédiment)			
	PCB 28	10107 (0013) - X1 X 33-012 (bode, sediment)	0.01	mg/kg MS	
	PCB 52		0.01	mg/kg MS	
	PCB 101		0.01	mg/kg MS	
	PCB 118		0.01	mg/kg MS	
	PCB 138		0.01	mg/kg MS	
	PCB 153		0.01	mg/kg MS	
	PCB 180		0.01	mg/kg MS	
	SOMME PCB (7)			mg/kg MS	
LSA46	BTEX par Head Space/GC/MS	HS - GC/MS [Extraction méthanolique] - NF EN ISO 22155			
	Benzène	22199	0.05	mg/kg MS	
	Toluène		0.05	mg/kg MS	
	Ethylbenzène		0.05	mg/kg MS	
	m+p-Xylène		0.05	mg/kg MS	
	o-Xylène		0.05	mg/kg MS	
	Somme des BTEX			mg/kg MS	
LSA48	COHV par Head Space/GC/MS solides				
	Dichlorométhane		0.05	mg/kg MS	
	Chloroforme		0.02	mg/kg MS	
	Tetrachlorométhane		0.02	mg/kg MS	
	Trichloroéthylène		0.05	mg/kg MS	
	Tetrachloroéthylène		0.05	mg/kg MS	
	1,1-Dichloroéthane		0.1 0.05	mg/kg MS	
	1,2-dichloroéthane		0.05	mg/kg MS	
	1,1,1-trichloroéthane 1,1,2-Trichloroéthane		0.1	mg/kg MS mg/kg MS	
	cis 1,2-Dichloroéthylène		0.1	mg/kg MS	
	Trans-1,2-dichloroéthylène		0.1	mg/kg MS	
	Chlorure de vinyle		0.1	mg/kg MS	
	1,1-Dichloroéthylène		0.02	mg/kg MS	
	Bromochlorométhane		0.2	mg/kg MS	
	Dibromométhane		0.2	mg/kg MS	
	Bromodichlorométhane		0.2	mg/kg MS	
	Dibromochlorométhane		0.2	mg/kg MS	
	1,2-Dibromoéthane		0.05	mg/kg MS	
	Bromoforme (tribromométhane)		0.2	mg/kg MS	
LSL4E	Découpage 8 tranches HCT-CPG nC10 à nC40 (%)	GC/FID - Méthode interne		-	
	> C10 - C12 inclus			%	
	> C12 - C16 inclus			%	
	> C16 - C20 inclus			%	
			_		

Annexe technique

N° de rapport d'analyse :AR-17-LK-127541-01 **Dossier N°: 17E103456**

Emetteur: Commande EOL: 006-10514-286400

Référence commande : CSSPNO172503 - BC17-5049 -Nom projet: A200 - LOOS - CM CIC

KPO

Code	Analyse	Principe et référence de la méthode	LQI	Unité	Prestation réalisée sur le site de :
	> C20 - C24 inclus			%	ue .
	> C24 - C28 inclus			%	
	> C28 - C32 inclus			%	
	> C32 - C36 inclus			%	
	> C36 - C40 exclus			%	
LSM04	Arsenic (As) sur éluat	ICP/AES - NF EN ISO 11885 / NF EN 16192	0.2	mg/kg MS	1
LSM05	Baryum (Ba) sur éluat	1	0.1	mg/kg MS	1
LSM11	Chrome (Cr) sur éluat	1	0.1	mg/kg MS	1
LSM13	Cuivre (Cu) sur éluat		0.2	mg/kg MS	1
LSM20	Nickel (Ni) sur éluat	1	0.1	mg/kg MS	1
LSM22	Plomb (Pb) sur éluat	1	0.1	mg/kg MS	1
LSM35	Zinc (Zn) sur éluat	1	0.2	mg/kg MS	1
LSM46	Résidu sec à 105°C (Fraction soluble) sur éluat Résidus secs à 105°C	Gravimétrie - NF T 90-029 / NF EN 16192	2000	mg/kg MS	
	Résidus secs à 105°C (calcul)		0.2	% MS	
LSM68	Carbone Organique par oxydation (COT) sur éluat	Spectrophotométrie (IR) [Oxydation à chaud en milieu acide] - NF EN 16192 - NF EN 1484 - Adaptée de NF EN 1484 (hors Sol)	50	mg/kg MS	
LSM90	Indice phénol sur éluat	Flux continu - NF EN ISO 14402 (adaptée sur sédiment,boue) - NF EN 16192	0.5	mg/kg MS	
LSM97	Antimoine (Sb) sur éluat	ICP/MS - NF EN ISO 17294-2 / NF EN 16192	0.005	mg/kg MS	1
LSN05	Cadmium (Cd) sur éluat	1	0.002	mg/kg MS	1
LSN26	Molybdène (Mo) sur éluat	1	0.01	mg/kg MS	1
LSN41	Sélénium (Se) sur éluat	1	0.01	mg/kg MS	1
LSN71	Fluorures sur éluat	Electrométrie [Potentiometrie] - NF T 90-004 (adaptée sur sédiment,boue) - NF EN 16192	5	mg/kg MS	
LSQ02	Conductivité à 25°C sur éluat Conductivité corrigée automatiquement à 25°C Température de mesure de la conductivité	Potentiométrie [Méthode à la sonde] - NF EN 27888 / NF EN 16192		μS/cm °C	
LSQ13	Mesure du pH sur éluat pH (Potentiel d'Hydrogène)	Potentiométrie - NF EN ISO 10523 / NF EN 16192			
10/02	Température de mesure du pH			°C	1
XXS01	Minéralisation eau régale - Bloc chauffant	Digestion acide - NF EN 13346 Méthode B			1
XXS06	Séchage à 40°C	Séchage - NF ISO 11464		0/ 55	1
XXS07	Refus Pondéral à 2 mm	Gravimétrie - NF ISO 11464	1	% P.B.	1
XXS4D	Pesée échantillon lixiviation Volume Masse	Gravimétrie -		ml g	

Annexe de traçabilité des échantillons

Cette traçabilité recense les flaconnages des échantillons scannés dans EOL sur le terrain avant envoi au laboratoire

N° de rapport d'analyse : AR-17-LK-127541-01 Dossier N°: 17E103456

Emetteur: Commande EOL: 006-10514-286400

Nom projet: N° Projet: CSSPNO172503 - BC17-5049 - KPO Référence commande : CSSPNO172503 - BC17-5049 -

KPO

A200 - LOOS - CM CIC

Nom Commande: A200 - LOOS - CM CIC

Sol

501				
Référence Eurofins	Référence Client	Date&Heure Prélèvement	Code-barre	Nom flacon
17E103456-001	SC1.1	06/11/2017	V05BA4501	374mL verre (sol)
17E103456-002	SC1.2	06/11/2017	V05BA4492	374mL verre (sol)
17E103456-003	SC1.3	06/11/2017	V05BA4497	374mL verre (sol)
17E103456-004	SC2.1	06/11/2017	V05BA4502	374mL verre (sol)
17E103456-005	SC2.2	06/11/2017	V05BA4496	374mL verre (sol)
17E103456-006	SC2.3	06/11/2017	V05BA3112	374mL verre (sol)
17E103456-007	SC3.1	06/11/2017	V05BA4491	374mL verre (sol)
17E103456-008	SC3.2	06/11/2017	V05BA4495	374mL verre (sol)
17E103456-009	SC4.1	06/11/2017	V05BA3102	374mL verre (sol)
17E103456-010	SC4.2	06/11/2017	V05BA4503	374mL verre (sol)
17E103456-011	SC6.1	06/11/2017	V05BA3117	374mL verre (sol)
17E103456-012	SC6.2	06/11/2017	V05BA4505	374mL verre (sol)
17E103456-013	SC8.1	06/11/2017	V05BA4507	374mL verre (sol)
17E103456-014	SC8.2	06/11/2017	V05BA3118	374mL verre (sol)
17E103456-015	SC10.1	06/11/2017	V05AY9050	374mL verre (sol)
17E103456-016	SC10.2	06/11/2017	V05AY9051	374mL verre (sol)
17E103456-017	SC11.1	06/11/2017	V05AY9057	374mL verre (sol)
17E103456-018	SC11.2	06/11/2017	V05AY9061	374mL verre (sol)
17E103456-019	SC11.3	06/11/2017	V05AY9054	374mL verre (sol)
17E103456-020	SC12.1	06/11/2017	V05AV8448	374mL verre (sol)
17E103456-021	SC12.2	06/11/2017	V05AY9060	374mL verre (sol)
17E103456-022	SC12.3	06/11/2017	V05AY9062	374mL verre (sol)
17E103456-023	SC13.1	06/11/2017	V05AV8449	374mL verre (sol)
17E103456-024	SC13.2	06/11/2017	V05AY9056	374mL verre (sol)
17E103456-025	SC14.1	06/11/2017	V05AY9055	374mL verre (sol)
17E103456-026	SC14.2	06/11/2017	V05BA4490	374mL verre (sol)
17E103456-027	SC15.1	06/11/2017	V05AY9079	374mL verre (sol)
17E103456-028	SC15.2	06/11/2017	V05AY9063	374mL verre (sol)
17E103456-029	SC16.1	06/11/2017	V05BA4493	374mL verre (sol)
17E103456-030	SC16.2	06/11/2017	V05AY9074	374mL verre (sol)
17E103456-031	SC17.1	06/11/2017	V05BC3355	374mL verre (sol)
17E103456-032	SC17.2	06/11/2017	V05BC3339	374mL verre (sol)
17E103456-033	SC18.1	06/11/2017	V05AY9048	374mL verre (sol)
17E103456-034	SC18.2	06/11/2017	V05AZ3031	374mL verre (sol)
17E103456-035	SC18.3	06/11/2017	V05BA4498	374mL verre (sol)
17E103456-036	SC19.1	06/11/2017	V05AY9049	374mL verre (sol)
17E103456-037	SC19.2	06/11/2017	V05AY9047	374mL verre (sol)
17E103456-038	SC20.1	06/11/2017	V05BC3330	374mL verre (sol)
17E103456-039	SC20.2	06/11/2017	V05BC3323	374mL verre (sol)
17E103456-040	SC21.1	06/11/2017	V05BC3353	374mL verre (sol)
17E103456-041	SC21.2	06/11/2017	V05BC3328	374mL verre (sol)
17E103456-042	SC22.1	06/11/2017	V05BC3335	374mL verre (sol)
17E103456-043	SC22.2	06/11/2017	V05BC3337	374mL verre (sol)

Tél 03 88 911 911 - fax 03 88 916 531 - site web : www.eurofins.fr/env SAS au capital de 1 632 800 € - APE 7120B - RCS SAVERNE 422 998 971

Annexe de traçabilité des échantillons

Cette traçabilité recense les flaconnages des échantillons scannés dans EOL sur le terrain avant envoi au laboratoire

Dossier N°: 17E103456 N° de rapport d'analyse : AR-17-LK-127541-01

Emetteur: Commande EOL: 006-10514-286400

Nom projet: N° Projet: CSSPNO172503 - BC17-5049 - KPO Référence commande: CSSPNO172503 - BC17-5049 -

A200 - LOOS - CM CIC

Nom Commande: A200 - LOOS - CM CIC

Référence Eurofins	Référence Client	Date&Heure Prélèvement	Code-barre	Nom flacon
17E103456-044	SC23.1	06/11/2017	V05BC3333	374mL verre (sol)
17E103456-045	SC23.2	06/11/2017	V05BC3349	374mL verre (sol)
17E103456-046	SC23.3	06/11/2017	V05BC3350	374mL verre (sol)
17E103456-047	SC24.1	06/11/2017	V05BC3336	374mL verre (sol)
17E103456-048	SC24.2	06/11/2017	V05BC3334	374mL verre (sol)

Annexe 7. Propriétés physico-chimiques

Cette annexe contient 4 pages.

LEGENDE Volatilité : LEGENDE Solubilité : ++: S>100 mg/l +:100>S>1 -: 1>S>0.01 mg/l ++ :Pv > 1000 PA (COV) - : 10 >P> 10-2 Pa (non COV) + : 1000 > Pv > 10 Pa (COV) -- : 10-2 >P> 10-5 Pa (non COV) mg/l -- : S<0.01 mg/l Volatilité solubilité Classement classement cancérogénéicité CIRC (IARC) Mention de danger CAS n°R S symboles UE

METAUX ET METALLOIDES

METAUX ET ME	IALLUIDES	•						
Antimoine (Sb)	7440-36-0	non adequat	non adequat	SGH07, SGH09	H332, H302, H411	C2	-	-
Arsenic (As)	7440-38-2	non adequat	non adequat	SGH06, SGH09	H331, H301, H400, H410	C1A	1	Α
Baryum (Ba)	non adéquat	non adequat	Soluble dans l'éthanol ?	-	-	-	-	D
Cadmium (Cd)	7440-43-9	non adequat	non adequat	SGH06, SGH08, SGH09	H350, H341, H361fd, H330, H372, H400, H410	C1B/C2 M1B/M2 R1B/R2	1	prob canc
Chrome III (CrIII)	1308-38-9	non adequat	non adequat	-	-	-	3	D
Chrome VI (CrVI)	trioxyde de Cr 1333-82-0	non adequat	non adequat	SGH03, SGH05, SGH06, SGH08, SGH09	H271, H350, H340, H361f, H330, H311, H301, H372, H314, H334, H317, H410	C1A M1B R2	1	A (inhº) D (oral)
Cobalt (Co)	7440-48-4	non adequat	non adequat	SGH08	H334, H317, H413	C1B M2 R1B	2B	-
Cuivre (Cu)	7440-50-8	non adequat	non adequat	-	-	-	3	D
Etain (Sn)	non adéquat	non adequat	non adequat	=	-	-	-	-
Manganèse (Mn)	non adéquat	non adequat	non adequat	SGH07 (dioxyde)	H332, H302 (dioxyde)	-	-	D
Mercure (Hg)	7439-97-6	non adequat	non adequat	SGH06, SGH08, SGH09	H360D, H330, H372, H400, H410	R1B	3	CàD
Molybdène (Mo)	7439-98-7	non adequat	non adequat	trioxyde : SGH07, SGH08	Trioxyde : H351, H319, H335	trioxyde : C2	-	-
Nickel (Ni)	7440-02-0	non adequat	non adequat	SGH07, SGH08	H351, H372, H317, H412	C2	2B	Α
Plomb (Pb)	7439-92-1	non adequat	non adequat	SGH07, SGH08, SGH09	H360Df, H332, H373, H400, H410	R1A	2B	B2
Sélénium (Se)	7782-49-2	non adequat	non adequat	SGH06, SGH08	H331, H301, H373, H413	=	3	D
Thallium (TI)	7440-28-0	non adequat	non adequat	SGH06, SGH08	H330, H300, H373, H413	-	-	D
Vanadium (Va)	7440-62-2	non adequat	non adequat	-	-	-	3	D
Zinc (Zn)	7440-66-6 (poudre)	non adequat	non adequat	SGH02 (pyrophorique) SGH09	H250, H260 (pyrophorique) H400, H410	-	-	D
Naphtalène	91-20-3	+	+	SGH07, SGH08, SGH09	H351, H302, H400, H410	C2	2B	С
Acenaphtylène	208-96-8	-	+	-	-	-	-	D
Acenaphtène	83-29-9	-	+	1	-	-	-	
Fluorène	86-73-7	-	+	-	-	-	3	D
Phénanthrène	85-01-8	-	+	-	-	-	3	D
Phénanthrène Anthracène			+	-	-	-	3	D D
	85-01-8							
Anthracène	85-01-8 120-12-7		-	-	-	-	3	D
Anthracène Fluoranthène Pyrène	85-01-8 120-12-7 206-44-0 129-00-0		-	-		-	3	D D
Anthracène Fluoranthène	85-01-8 120-12-7 206-44-0	 		-	- - - H350, H400, H410 H350, H341, H400,	- - - C1B C1B	3 3 3	D D D
Anthracène Fluoranthène Pyrène Benzo(a)anthracène Chrysene	85-01-8 120-12-7 206-44-0 129-00-0 56-55-3 218-01-9	 	- - - -	- - - - SGH08, SGH09 SGH08, SGH09	- - - H350, H400, H410 H350, H341, H400, H410	- - - C1B C1B M2	3 3 3 2B 3	D D D B2 B2
Anthracène Fluoranthène Pyrène Benzo(a)anthracène Chrysene benzo(b)fluoranthène	85-01-8 120-12-7 206-44-0 129-00-0 56-55-3 218-01-9 205-99-2		-	- - - SGH08, SGH09 SGH08, SGH09 SGH08, SGH09	- H350, H400, H410 H350, H341, H400, H410 H350, H400, H410	- - - C1B C1B M2 C1B	3 3 3 2B 3 2B	D D D B2 B2 B2
Anthracène Fluoranthène Pyrène Benzo(a)anthracène Chrysene	85-01-8 120-12-7 206-44-0 129-00-0 56-55-3 218-01-9	 	- - - -	- SGH08, SGH09 SGH08, SGH09 SGH08, SGH09 SGH08, SGH09 SGH07, SGH08,	- H350, H400, H410 H350, H341, H400, H410 H350, H400, H410 H350, H400, H410 H340, H350, H360FD, H317,	- - - C1B C1B M2	3 3 3 2B 3	D D D B2 B2
Anthracène Fluoranthène Pyrène Benzo(a)anthracène Chrysene benzo(b)fluoranthène benzo(k)fluoranthène Benzo(a)pyrène	85-01-8 120-12-7 206-44-0 129-00-0 56-55-3 218-01-9 205-99-2 207-08-9 50-32-8		-	- SGH08, SGH09 SGH08, SGH09 SGH08, SGH09 SGH07, SGH08, SGH09	- H350, H400, H410 H350, H341, H400, H410 H350, H400, H410 H350, H400, H410 H340, H350, H360FD, H317, H400, H410	- C1B C1B M2 C1B C1B C1B C1B	3 3 3 2B 3 2B 2B 2B	D D D B2 B2 B2 B2 B2
Anthracène Fluoranthène Pyrène Benzo(a)anthracène Chrysene benzo(b)fluoranthène benzo(k)fluoranthène	85-01-8 120-12-7 206-44-0 129-00-0 56-55-3 218-01-9 205-99-2 207-08-9			- SGH08, SGH09 SGH08, SGH09 SGH08, SGH09 SGH08, SGH09 SGH07, SGH08,	- H350, H400, H410 H350, H341, H400, H410 H350, H400, H410 H350, H400, H410 H340, H350, H360FD, H317,	- C1B C1B C1B M2 C1B C1B	3 3 3 2B 3 2B 2B 2B	D D D B2 B2 B2 B2 B2

	LEGENDE Volatilité :					LEGENDE Solubilité : ++ : S>100		
	++ :Pv > 1000 PA (COV) -:			- : 10 >P> 10-2 P	- : 10 >P> 10-2 Pa (non COV)		-: 1>S>0.01 mg/l	
	+: 1000 > Pv >	10 Pa (COV) Volatilité	solubilité	: 10-2 >P> 10	5 Pa (non COV)	+: 100>S>1 mg/l classement (: S<0.	
	CAS n°R	Pv	S	symboles	Mention de danger	UE	CIRC (IARC)	EPA
COMPOSES ARO	MATIQUE	S MON	OCYLC	IQUES	•		(2/11/0)	
benzène	71-43-2	++	++	SGH02, SGH07, SGH08	H225, H350, H340, H372, H304, H319, H315	C1A M1B	1	А
toluène	108-88-3	++	++	SGH02, SGH07, SGH08	H225, H361d, H304, H373, H315, H336	R2	3	D
ethylbenzène	100-41-4	+	++	SGH02, SGH07	H225, H332	-	2B	-
xylènes	1330-20-7	+	++	SGH02, SGH07	H226, H332, H312, H315	-	3	-
styrène	100-42-5	+	++	SGH02, SGH07	H226, H332, H319, H315	-	2B	-
cumène (isopropylbenzène)	98-82-8	+	+	SGH02, SGH07, SGH08, SGH09	H226, H304, H335, H411	-	2B	D
mesitylène (1,3,5 Triméthylbenzène)	108-67-8	+	+	SGH02, SGH07, SGH09	H226, H335, H411	-		-
pseudocumène (1,2,4 Triméthylbenzène)	95-63-6	+	+	SGH02, SGH07, SGH09	H226, H332, H319, H335, H315, H411	-	-	-
COMPOSES ORG	ΔΝΟ-ΗΔΙ	OGENE	S VOL		11333, 11313, 11411			l
PCE (tétrachloroéthylène)	127-18-4	++	++	SGH08, SGH09	H351, H411	C2	2A	B1
TCE (trichloroéthylène)	79-01-6	++	++	SGH07, SGH08	H350, H341, H319, H315, H336, H412	C1B M2	1	А
cis 1,2DCE (dichloroéthylène)	156-59-2		++	SGH02, SGH07	H225, H335, H412	-	-	D
trans 1,2DCE (dichloroéthylène)) 156-60-5	++	++	SGH02, SGH07	H225, H335, H412	-	-	D
1,1 DCE (1,1 dichloroéthylène)	75-35-4	++	++	SGH02, SGH07, SGH08	H224, H351, H332	C2	3	С
VC (chlorure de vinyle)	75-01-4	++	++	SGH02, SGH08	H220, H350	C1A	1	Α
1,1,2 trichloroéthane	79-00-5	++	++	SGH07, SGH08	H351, H332, H312, EUH066	C2	3	С
1,1,1 trichloroéthane	71-55-6	++	++	SGH07	H332, EUH059	-	3	D
1,2 dichloroéthane	107-06-2	++	++	SGH02, SGH07, SGH08.	H225, H350, H302, H319, H335, H315	C1B	2B	B2
1,1 dichloroéthane	75-34-3	++	++	SGH02, SGH07	H225, H302, H319, H335, H412	-	-	С
Tétrachlorométhane	56-23-5	++	++	SGH06, SGH08	H351, H331, H311, H301, H372, H412, EUH059	C2	2B	B2
TCmA (trichlorométhane ou chloroforme)	67-66-3	++	++	SGH07, SGH08	H351, H302, H373, H315	C2	2B	B2
dichlorométhane	75-09-2	++	++	SGH08, SGH09	H351	C2	2B	B2
trichlorobenzènes	87-61-1 120-82-1 108-70-3	+	+	SGH07, SGH09	H302, H315, H400, H410	-	-	(1,2,4) D
1,2 dichlorobenzène	95-50-1	+	+	SGH07, SGH09	H302, H319, H335, H315, H400, H410	-	3	D
1,3 dichlorobenzène	541-73-1	+	++	-	-	-	3	D
1,4 dichlorobenzène	106-46-7	+	+	SGH08, SGH09	H351, H319, H400, H410	C2	2B	-
chlorobenzène	108-90-7	++	++	SGH02, SGH07, SGH09	H226, H332, H411	-	-	D
HYDROCARBUR	ES SUIVAI	NT LES	TPH					
Aliphatic nC>5-nC6	non adéquat	++	+					
Aliphatic nC>6-nC8	"	++	+					
Aliphatic nC>8-nC10 Aliphatic nC>10-nC12	"	+	-	white spirit, essences spéciales, solvants tout type		classement	-	
Aliphatic nC>12-nC16	п							
Aliphatic nC>16-nC35	"	-						
Aliphatic nC>35	"			aromatiques	d'hydrocarbures :	fonction des		
Aromatic nC>5-nC7 benzène Aromatic nC>7-nC8 toluène	"	++	++	légers, pétroles lampants	H350, H340, H304	hydrocarbures	-	
Aromatic nC>8-nC10	"	+	+	(kérosène) :				
Aromatic nC>10-nC12	"	+	+	`SGH08				
Aromatic nC>12-nC16	"	-	+					
Aromatic nC>16-nC21	"	-	-			ĺ	Ì	I

MENTIONS DE DANGER

	28	mentions	de	danger	physiq	ue
--	----	----------	----	--------	--------	----

- H200: Explosif instable
- H201: Explosif; danger d'explosion en masse
- H202 : Explosif : danger sérieux de projection
- H203: Explosif; danger d'incendie, d'effet de souffle ou de projection
- H204 : Danger d'incendie ou de projection
- H205 : Danger d'explosion en masse en cas d'incendie
- H220 : Gaz extrêmement inflammable
- H221: Gaz inflammable
- H222 : Aérosol extrêmement inflammable
- H223 : Aérosol inflammable
- H224 : Liquide et vapeurs extrêmement inflammables
- H225 : Liquide et vapeurs très inflammables
- H226: Liquide et vapeurs inflammables
- H228 : Matière solide inflammable

- H240 : Peut exploser sous l'effet de la chaleur
- H241: Peut s'enflammer ou exploser sous l'effet de la chaleur
- H242 : Peut s'enflammer sous l'effet de la chaleur
- H250 : S'enflamme spontanément au contact de l'air
- H251: Matière auto-échauffante; peut s'enflammer
- H252 : Matière auto-échauffante en grandes quantités : peut s'enflammer
- H260 : Dégage au contact de l'eau des gaz inflammables qui peuvent s'enflammer spontanément
- H261 : Dégage au contact de l'eau des gaz
- H270: Peut provoquer ou aggraver un incendie; comburant
- H271: Peut provoquer un incendie ou une explosion; comburant puissant
- H272: Peut aggraver un incendie; comburant
- H280 : Contient un gaz sous pression ; peut exploser sous l'effet de la chaleur
- H281 : Contient un gaz réfrigéré ; peut causer des brûlures ou blessures cryogéniques
- H290 : Peut être corrosif pour les métaux

38 mentions de danger pour la santé

- H300: Mortel en cas d'ingestion
- H301: Toxique en cas d'ingestion
- H302: Nocif en cas d'ingestion
- H304 : Peut être mortel en cas d'ingestion et de pénétration dans les voies respiratoires
- H310 : Mortel par contact cutané
- H311: Toxique par contact cutané
- H312 : Nocif par contact cutané
- H314 : Provoque des brûlures de la peau et des lésions oculaires graves
- H315 : Provoque une irritation cutanée

- H317 : Peut provoquer une allergie cutanée
- H318 : Provoque des lésions oculaires graves
- H319 : Provoque une sévère irritation des yeux
- H330: Mortel par inhalation H331 : Toxique par inhalation
- H332: Nocif par inhalation
- H334 : Peut provoquer des symptômes allergiques ou d'asthme ou des difficultés respiratoires par inhalation
- H335 : Peut irriter les voies respiratoires
- H336: Peut provoquer somnolence ou vertiges
- H340 : Peut induire des anomalies génétiques <indiquer la voie d'exposition s'il est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même danger>
- H341 : Susceptible d'induire des anomalies génétiques <indiquer la voie d'exposition s'îl est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même dangert
- dangera
- autre voie d'exposition ne conduit au même danger>
- H361 : Susceptible de nuire à la fertilité ou au foetus <indiquer l'effet s'il est
- H362 : Peut être nocif pour les bébés nourris au lait maternel
- H350: Peut provoquer le cancer < indiquer la voie d'exposition s'îl est H370: Risque avéré d'effets graves pour les organes < ou indiquer tous les organes affectés, s'îls sont formellement prouvé qu'aucune autre voie d'exposition ne conduit au même connus> <indiquer la voie d'exposition s'îl est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même danger>
- H351 : Susceptible de provoquer le cancer <indiquer la voie d'exposition s'îl H371 : Risque présumé d'effets graves pour les organes <ou indiquer tous les organes affectés, s'îs est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même sont connus> <indiquer la voie d'exposition s'îl est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même sont connus> <indiquer la voie d'exposition s'îl est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même sont connus> <indiquer la voie d'exposition s'îl est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même sont connus> <indiquer la voie d'exposition s'îl est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même sont connus> <indiquer la voie d'exposition s'îl est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même sont connus> <indiquer la voie d'exposition ne conduit au même sont connus> <indiquer la voie d'exposition ne conduit au même sont connus> <indiquer la voie d'exposition ne conduit au même sont connus> <indiquer la voie d'exposition ne conduit au même sont connus> <indiquer la voie d'exposition ne conduit au même sont connus au même sont ne conduit au même danger>
- H360: Peut nuire à la fertilité ou au foetus <indiquer l'effet spécifique s'îl H372: Risque avéré d'effets graves pour les organes <indiquer tous les organes affectés, s'ils sont est connu> <indiquer la voie d'exposition s'îl est formellement prouvé qu'aucune connus> à la suite d'expositions répétées ou d'une exposition prolongée <indiquer la voie d'exposition s'îl est formellement prouvé gu'aucune autre voie d'exposition ne conduit au même danger>
- * H3/3 : Kisque presume u emets graves pour les organises de sudiquer la voie d'exposition s'il est formellement prouvé qu'aucune connus > à la suite d'expositions répétées ou d'une exposition prolongée <indiquer la voie d'exposition s'il est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même danger>

Pour certaines mentions de danger pour la santé des lettres sont ajoutées au code à 3 chiffres :

- H350i: Peut provoquer le cancer par inhalation
- H360F : Peut nuire à la fertilité
- H360D : Peut nuire au foetus
- H361f : Susceptible de nuire à la fertilité
- H361d : Susceptible de nuire au foetus
- H360FD: Peut nuire à la fertilité. Peut nuire au foetus
- H361fd : Susceptible de nuire à la fertilité. Susceptible de nuire au foetus
- H360Fd : Peut nuire à la fertilité. Susceptible de nuire au foetus
- H360Df: Peut nuire au foetus. Susceptible de nuire à la fertilité.

5 mentions de danger pour l'environnement

- H400 : Très toxique pour les organismes aquatiques
- H410 : Très toxique pour les organismes aquatiques, entraîne des effets néfastes à long terme
- H411 : Toxique pour les organismes aquatiques, entraîne des effets néfastes à long terme
- H412 : Nocif pour les organismes aquatiques, entraîne des effets néfastes à long terme • H413 : Peut être nocif à long terme pour les organismes aquatiques

Symboles de danger

- SHG01: Explosif (ce produit peut exploser au contact d'une flamme, d'une étincelle, d'électricité statique, sous l'effet de la chaleur, d'un choc ou de frottements).
- SGH02: Inflammable (Le produit peut s'enflammer au contact d'une flamme, d'une étincelle, d'électricité statique, sous l'effet de la chaleur, de frottements, au contact de l'air ou au contact de l'eau en dégageant des gaz inflammables).
- SGH03: Comburant (peut provoquer ou aggraver un incendie peut provoquer une explosion en présence de produit inflammable).
- SGH04: Gaz sous pression (peut exploser sous l'effet de la chaleur (gaz comprimé, liquéfié et dissous) peut causer des brûlures ou blessures liées au froid (gaz liquéfiés réfrigérés)
- SGH05: Corrosif (produit qui ronge et peut attaquer ou détruire des métaux peut provoquer des brûlures de la peau et des lésions aux yeux en cas de contact ou de projection).
- SGH06 : Toxique ou mortel (le produit peut tuer rapidement empoisonne rapidement même à faible dose).
- SGH07: Dangereux pour la santé (peut empoisonner à forte dose peut irriter la peau, les yeux, les voies respiratoires peut provoquer des allergies cutanées peut provoquer somnolence ou vertige - produit qui détruit la couche d'ozone).
- SGH08: Nuit gravement pour la santé (peut provoquer le cancer, modifier l'ADN, nuire à la fertilité ou au fœtus, altérer le fonctionnement de certains organes peut être mortele en cas d'ingestion et de pénétration dans les voies respiratoires - peut provoquer des difficultés respiratoires ou des allergies respiratoires).
- SGH09: Dangereux pour l'environnement (produit polluant provoque des effets néfastes à court et/ou long terme sur les organismes des milieux aquatiques).

De Classification en termes de cancérogénicité

UE	US-EPA	CIRC	
C1 (H350 ou H350i) : cancérogène avéré ou présumé l'être :		1 : Agent ou mélange cancérigène pour l'homme	
C1A : Substance dont le potentiel cancérogène pour l'être humain est avéré	A : Preuves suffisantes chez l'homme		
C1B : Substance dont le potentiel cancérogène pour l'être humain est supposé			
	B1 : Preuves limitées chez l'homme		
C2 : Substance suspectée d'être cancérogène pour l'homme	B2 : Preuves non adéquates chez l'homme et preuves suffisantes chez l'animal	2A : Agent ou mélange probablement cancérigène pour l'homme	
Carc.3 : Substance préoccupante pour l'homme en raison d'effets cancérogènes possibles (R40)	C : Preuves inadéquates chez l'homme et preuves limitées chez l'animal	2B : Agent ou mélange peut-être cancérigène pour l'homme	
	D : Preuves insuffisantes chez l'homme et l'animal	3 : Agent ou mélange inclassables quant-à sa cancérogénicité pour l'homme	
	E : Indications d'absence de cancérogénicité chez l'homme et chez l'animal	4 : Agent ou mélange probablement non cancérigène chez l'homme	

De Classification en termes de mutagénicité

M1 (H340) : Substance dont la capacité d'induire des mutations héréditaires est avérée ou qui sont à considérer comme induisant des mutations héréditaires dans les cellules germinales des êtres humains. Substance dont la capacité d'induire des mutations héréditaires dans les cellules germinales des êtres humains est avérée. M1A: Classification fondée sur des résultats positifs d'études épidémiologiques humaines. Substance considérée comme induisant des mutations héréditaires dans les cellules germinales des êtres humains.

M1B: Classification fondée sur des essais in vivo de mutagénicité sur des cellules germinales et somatiques et qui ont donné un ou des résultats positifs et sur des essais qui ont montré que la substance a des effets mutagènes sur les cellules germinales humaines, sans que la transmission de ces mutations à la descendance n'ait été établie.

M2 (H341) : Substance préoccupantes du fait qu'elle pourrait induire des mutations héréditaires dans les cellules germinales des êtres humains.

Classification en termes d'effets reprotoxiques

- Glassification on termes a circus reprotessingues					
UE					
R1 (H360 ou H360F ou H360D ou H360FD ou H360Fd	R1A: Substance dont la toxicité pour la reproduction humaine est avérée. La classification d'une substance dans cette catégorie s'appuie largement sur des études humaines.				
ou H360fD) : Reprotoxique avéré ou présumé	R1B : Substance présumée toxique pour la reproduction humaine. La classification d'une substance dans cette catégorie s'appuie largement sur des données provenant d'études animales.				

R2 (H361 ou H361f ou H361d ou H361fd): Substance suspectée d'être toxique pour la reproduction humaine. Les substances sont classées dans cette catégorie lorsque les résultats des études ne sont pas suffisamment probants pour justifier une classification dans la catégorie 1 mais qui font apparaître un effet indésirable sur la fonction sexuelle et la fertilité ou sur le développement.

Annexe 8. Glossaire

Cette annexe contient 2 pages.

AEA (Alimentation en Eau Agricole) : Eau utilisée pour l'irrigation des cultures

AEI (Alimentation en Eau Industrielle): Eau utilisée dans les processus industriels

AEP (Alimentation en Eau Potable) : Eau utilisée pour la production d'eau potable

ARR (Analyse des risques résiduels) : Il s'agit d'une estimation par le calcul (et donc théorique) du risque résiduel auquel sont exposées des cibles humaines à l'issue de la mise en œuvre de mesures de gestion d'un site. Cette évaluation correspond à une EQRS.

ARS (Agence régionale de santé): Les ARS ont été créées en 2009 afin d'assurer un pilotage unifié de la santé en région, de mieux répondre aux besoins de la population et d'accroître l'efficacité du système.

BASIAS (Base de données des Anciens Sites Industriels et Activités de Service) : Cette base de données gérée par le BRGM recense de manière systématique les sites industriels susceptibles d'engendrer une pollution de l'environnement.

BASOL: Base de données gérée par le Ministère de l'Ecologie, du Développement Durable et de l'Energie recensant les sites et sols pollués ou potentiellement pollués appelant une action des pouvoirs publics, à titre préventif ou curatif.

Biocentre : Ces installations sont classées pour la protection de l'environnement et sont soumises à autorisation préfectorale. Elles prennent en charge les déchets en vue de leur traitement basé sur la biodégradation aérobie de polluants chimiques.

BTEX (Benzène, Toluène, Ethylbenzène, Xylènes): Les BTEX (Benzène, Toluène, Ethylbenzène et Xylènes) sont des composés organiques mono-aromatiques volatils qui ont des propriétés toxiques.

COHV (**Composés organo-halogénés volatils**): Solvants organiques chlorés aliphatiques volatils qui ont des propriétés toxiques et sont ou ont été couramment utilisés dans l'industrie.

DREAL (Directions régionales de l'environnement, de l'aménagement et du logement) : Cette structure régionale du ministère du Développement durable pilote les politiques de développement durable résultant notamment des engagements du Grenelle Environnement ainsi que celles du logement et de la ville.

Eluat: voir lixiviation

EQRS (Evaluation quantitative des risques sanitaires) : Il s'agit d'une estimation par le calcul (et donc théorique) des risques sanitaires auxquels sont exposées des cibles humaines.

ERI (Excès de risque individuel) : correspond à la probabilité que la cible a de développer l'effet associé à une substance cancérogène pendant sa vie du fait de l'exposition considérée. Il s'exprime sous la forme mathématique suivante 10⁻ⁿ. Par exemple, un excès de risque individuel de 10⁻⁵ représente la probabilité supplémentaire, par rapport à une personne non exposée, de développer un cancer pour 100 000 personnes exposées pendant une vie entière.

ERU (Excès de risque unitaire) : correspond à la probabilité supplémentaire, par rapport à un sujet non exposé, qu'un individu contracte un cancer s'il est exposé pendant sa vie entière à une unité de dose de la substance cancérigène.

HAP (Hydrocarbures Aromatiques Polycycliques) : Ces composés constitués d'hydrocarbures cycliques sont générés par la combustion de matières fossiles. Ils sont peu mobiles dans les sols.

HAM (Hydrocarbures aromatiques monocycliques): Ces hydrocarbures constitués d'un seul cycle aromatiques sont très volatils, les BTEX* sont intégrés à cette famille de polluants..

HCT (Hydrocarbures Totaux) : Il s'agit généralement de carburants pétroliers dont la volatilité et la mobilité dans le milieu souterrain dépendent de leur masse moléculaire (plus ils sont lourds, c'est-à-dire plus la chaine carbonée est longue, moins ils sont volatils et mobiles).

IEM (Interprétation de l'état des milieux): au sens des textes ministériels du 8 février 2007, l'IEM est une étude réalisée pour évaluer la compatibilité entre l'état des milieux (susceptibles d'être pollués) et les usages effectivement constatés, programmés ou potentiels à préserver. L'IEM peut faire appel dans certains cas à une grille de calcul d'EQRS spécifique.

ISDI (Installation de Stockage de Déchets Inertes) : Ces installations sont classées pour la protection de l'environnement sous le régime de l'enregistrement. Ce type d'installation permet l'élimination de déchets

industriels inertes par dépôt ou enfouissement sur ou dans la terre. Sont considérés comme déchets inertes ceux répondant aux critères de l'arrêté ministériel du 12 décembre 2014.

ISDND (Installation de Stockage de Déchets Non Dangereux): Ces installations sont classées pour la protection de l'environnement et sont soumises à autorisation préfectorale. Cette autorisation précise, entre autres, les capacités de stockage maximales et annuelles de l'installation, la durée de l'exploitation et les superficies de l'installation de la zone à exploiter et les prescriptions techniques requises.

ISDD (Installation de Stockage de Déchets Dangereux): Ces installations sont classées pour la protection de l'environnement et sont soumises à autorisation préfectorale. Ce type d'installation permet l'élimination de déchets dangereux, qu'ils soient d'origine industrielle ou domestique, et les déchets issus des activités de soins.

Lixiviation: Opération consistant à soumettre une matrice (sol par exemple) à l'action d'un solvant (en général de l'eau). On appelle lixiviat la solution obtenue par lixiviation dans le milieu réel (ex : une décharge). La solution obtenue après lixiviation d'un matériau au laboratoire est appelée un éluat.

PCB (Polychlorobiphényles): L'utilisation des PCB est interdite en France depuis 1975 (mais leur usage en système clos est toléré). On les rencontre essentiellement dans les isolants diélectriques, dans les transformateurs et condensateurs individuels. Ces composés sont peu volatils, peu solubles et peu mobiles.

Plan de Gestion : démarche définie par les textes ministériels du 8 février 2007 visant à définir les modalités de réhabilitation et d'aménagement d'un site pollué.

QD (Quotient de danger) : Rapport entre l'estimation d'une exposition (exprimée par une dose ou une concentration pour une période de temps spécifiée) et la VTR* de l'agent dangereux pour la voie et la durée d'exposition correspondantes. Le QD (sans unité) n'est pas une probabilité et concerne uniquement les effets à seuil.

VTR (Valeur toxicologique de référence): Appellation générique regroupant tous les types d'indices toxicologiques qui permettent d'établir une relation entre une dose et un effet (toxique à seuil d'effet) ou entre une dose et une probabilité d'effet (toxique sans seuil d'effet). Les VTR sont établies par des instances internationales (l'OMS ou le CIPR, par exemple) ou des structures nationales (US-EPA et ATSDR aux Etats-Unis, RIVM aux Pays-Bas, Health Canada, ANSES en France, etc.).

VLEP (Valeur Limite d'Exposition Professionnelle): Valeur limite d'exposition correspondant à la valeur réglementaire de concentration dans l'air de l'atmosphère de travail à ne pas dépasser durant plus de 8 heures (VLEP 8H) ou 15 minutes (VLEP CT); la VLEP 8H peut être dépassée sur de courtes périodes à condition de ne pas dépasser la VLEP CT.